Math 226, Sample Midterm 2 Solution to Problem 1

1. Let \(f(x, y) = x^4 + y^4 - 4xy + 6 \).
 a. Find and classify all critical points of \(f \).

 Solution:

 a. Find critical points:

 \[
 f_x = 4x^3 - 4y, \quad f_y = 4y^3 - 4x
 \]

 Setting \(f_x = 0, f_y = 0 \), we find \(y = x^3, x = y^3 \) and so \(x = x^9 \). Then only real solutions to this equation are \(x = 0, 1, -1 \). Since \(y = x^3 \), we find that \(y = x \) and so the critical points are \((0, 0), (1, 1), (-1, -1) \).

 \[
 f_{xx} = 12x^2, \quad f_{xy} = f_{yx} = -4, \quad f_{yy} = 12y^3.
 \]

 Note that \(f_{xy} = f_{yx} \) since \(f \) is \(C^2 \).

 For \((0, 0)\), \(A = C = 0, B = -4 \), so \(B^2 - AC = 16 > 0 \), and so this is a saddle.

 For \((1, 1)\) and \((-1, -1)\), \(A = C = 12, B = -4 \), so \(B^2 - AC = 16 - 144 < 0 \), and so these are relative min.

 b. Since \(f(x, 0) = x^4 + 6 \), there is no global max.

 Since degree four polynomials dominate degree two polynomials, \(x^4 \) and \(y^4 \) dominate \(xy \) and so

 \[
 \lim_{(x,y) \to \infty} f(x, y) = +\infty.
 \]

 So, for sufficiently large \(R \), all points outside the open disk \(B_R(\bar{0}) \) centered at \(\bar{0} \) with radius \(R \), cannot compete for the global minimum. So, if there is a global minimum, then it must occur in \(B_R(\bar{0}) \) and therefore at the relative minimum above. These are global minima because \(f(x, y) \) is a continuous function and the closed disk \(\overline{B_R(\bar{0})} \) is closed and bounded.