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29.
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INSTRUCTOR’S SOLUTIONS MANUAL

S =4, [=-1, 0= /") = % ifx >0,
O f@Q+ @B -2)=4-1=3"

S0y = 0= error = 0= £(3) = 3.

I/"G)) = — = 5 if2<x <3, s0 [Brror] < (3~ 2)2.

Thus 3 < /(3) <34
The linearization of f(x) at x =2 is
L) =/ + /@) —2) =4~ (x~-2).

Thus L(3) = 3. Also, since 1/(2x) < f"(x) < 1/x for
x > 0, we have for 2 < x < 3, (1/6) < f"(x) < (1/2).
Thus

11 ) 1 /1 )
3+5(3)@—m sﬂmsa+§(5>o—m.

The best approximation for f(3) is the midpoint of this’
interval: f(3) ~ 3%.

The linearization of g(x) at x =2 is
Lx)=gR)+g @) —2)=1+4+2(x —2).

Thus L(1.8) = 0.6.
If1g”¢) < 14+ (x —2)%forx > 0, then
1g"() < 14 (=0.2)% = 1.04 for 1.8 < x < 2. Hence

2(1.8) &~ 0.6 with |error| < %(1 04)(1.8 — 2)% = 0.0208.

If f(#) = sind, then /' () = cosf and f”'(A) = —sinh.
Since f(0) = 0 and f'(0) = 1, the linearization of f at
6=0is L@ =0+1(0—0)=6.

If0<¢<8,then /7(t) <0,s00 <sinfl <4,
If0>¢>86,then f/(t) > 0,500 >sinf > 6.

In either case, |sinf| < |sin8| < |4} if ¢ is between 0 and
. Thus the error E(f) in the approximation sinf ~

satisfies \
01, ,2 18]

E@) < —0]" = —.

[E@®) < > 6] 5

If |#] £ 17° = 177 /180, then

E@)] 1 (17;:)2
<[ — ] ~0.044.
16 =2 \180 0

Thus the percentage error is less than 5%.

V= %m'} = AV = 4nr? Ar
If » = 20.00 and Ar = 0.20, then
AV = 47(20.00)2(0.20) = 1005,
The volume has increased by about 1005 c¢m?,

SECTION 4.10 (PAGE 280)

Section 410 Taylor Polynomials
(page 280)

If f(x) = e, then f®x) = (—1)fe™, s0
J®0) = (=1)*. Thus

.2 3 4
X X X
Py =1-x+5 =3+

If f(x) = cosx,then f'(x) = -—sinyx,
S"(x) = —cosx,and f”(x) = sinx. In par-
ticular, f(r/4) = [f"(x/4) = 1//2 and
[(m/4) = ["(n/4) = —1/+/2. Thus

4 4 mN\3
por= 5[ (=969 6D

fx)=Inx f(2y=1In2

oy = L oy = )

JSx)= . S 2= 3
-1 -1
f”(x) — ;3_ f//(z) — ‘_4“

2 2

Sy = ) J"Q) = 3
fOm =22 Me=22
x4 16

Thus

24 e — L e e ey
P4(x)_ln2—?—2(x 2) 8(x 2) +24(x 2) 64(:c 2)".

fx)=secx f0)=1
S (x) =secxtanx =0
J7(x) =2sec3x —secx FMOES
S (x) = (6sec® x — 1) secx tanx J"0y=0

Thus Py(x) = 1 + (x2/2).

fx)y=x'7 @ =2
F@= e
S = =5
Frey= Ry =

165
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Thus

P PN ST SR B
Pa() =2+ 705 = 4) = oy =4 4 55— 47

) =(1=x)" 1) =1
S =—-x)"7 7' =1
) =201 -x)"° f’::(O) =2
S =310 —x) J"(0) =3!
f(n)(x).: a1 - x)—-(ll—H) f(")(O) = n!
Thus
Pyx)=14x +x2+x3+ coox",
1
f(x) 2+x JOy=3
poy o~ ey b
f(-\’)—m f(l)—z
2' 1
7" A N ==
S (x)~-(2+x)3 S M 273
e —3! Sy = -
70 = Gy 3
P (—=1"n!
() PR (=1)"n! f(")(l) =
SV = —(2+,v)”+' 3+l
Thus
L] ! LED
Pn(x)=-3-—§(x—l)+ﬁ(x—l)2 + 5 (x—1)".
S{x) = sin(2x) f(x/2)y=0
f'(x) = 2cos(2x) f(x)2)=—
S (x) = =22 sin(2x) S @) =0
M(x) = —23 cos(2x) M2 =23

SO/ =0
IOw/) =2

JOx) =24 sin2x). = 24/ (x)
7O = 2 x)

Bvidently /@ (z/2) = 0and
f(2n—1)(n./2) — (__])nzZn—I' Thus

Pypi(x) = -2 (x - %) +2§—3|I(- - %)3 - i—s' (.\’ — %)5
H—

n 2 ‘—1 2n—1
+eot =D Cn—1)! (" 2) :
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S =58, =5,

f’”(x) — __x—8/3
S"(8)

=2

a=8: [~ ﬂ&+/mu—&+——4 8)’
1
= —(x —8) — ———(x — 8)
1 21+ (x ) 9)(32(x )
912 24 — — 2 2,07986
+”}2 . 288 0 |
Error = %Z( -8 = TS A for some ¢ in
[8, 9]. :
For 8 < ¢ < 9 we have 83 > 8%/3 = 28 =256 s0
0 < Error < > < 0.000241
~ 81 x256 '
Thus 2.07986 < 9/ <2,08010.
Since f(x) = /¥, then f'(x) = % —'/2
Sy =—4x73% and f"(x) = “5/2 Hence,

V6T & f(64) + [ (64)(61 — 64) + ! f”(64)(61 — 64)?

1

I 1
=84 —(=3) — = ~ 7.810302
TR (2048>( 3 7

. _ ' fll/( ) 3
The error is Ry = Ra([f; 64,61) = (61 — 64)° for

some ¢ between 61 and 64, Clearly Rz < 0. Ifr > 49,
and in particular 61 < ¢ < 64, then

/()] < 3(49)7/% = 0.0000223 = K.

Hence,
K 3
IR2| < §|61 — 64" = 0.0001004,

Since Ry < 0, therefore,

7.8103027 — 0.0001004 < /61 < 7.8103027
7.8102023 < /61 < 7.8103027,

1 I

f(x) = ;’2 f (x) - x2 56
f//(x) — x_3’ fll/(x) —_ 7

=1 :f(x)%l—(x—l)+-2—(x~l)2

1 2 .
T~ 1 :,(0 .02) + (0.02)% = 0.9804.
Error = Il )(0 02)% = F(0.02)3 where
Iscslm

1
Therefors, —(0.02)° < T 0.9804 < 0,

1
ie, 0980392 < — 98 .
Le _1.02<09 0400
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Since f(x) = tan~! x, then

1 7 " - —2+6x
SO =107 SO =57 2)2,f<) T
Hence,
an™! (0.97) & f(1) + f/(1)(0.97 — 1) + 4 /7(1)(0.97 — 1)?

4
= 0.7701731,

. Y Coom2
= +2( 0.03)+( 4)( 0.03)

i
The error is Ry = / (C)( 0. 03)3 for some ¢ between
0.97 and 1. Note that Rz < 0. If097 <t <1, then

—2+6
FO1 = S = (Téi;-)-f < 05232 = K.
Hence,
K 3
|Ry| < §|—|0.97 - 117 < 0.0000024.
Since Ry < 0,

0.7701731 — 0.0000024 < tan™" (0.97) < 0.7701731
0.7701707 < tan™' (0.97) < 0.7701731,

fxy=e", [fOx)=e fork=1,2,3...

a=0: f(x)%l+x+%2-

e 051 —05+ (0'25)2 = 0.625

Error = f”’(c) —=(0. 5)3 (—0.05)3 for some ¢ between

—0.5 and 0. Thus

{Error| <

0.5)
( 6) < 0,020834,

and —0.020833 < ¢ %5 - 0.625 < 0, or
0.604 < 705 < 0.625.

Since f(x) = sinx, then f’(x) = cosx, f"(x) =
and f/"(x) = —cosx. Hence,

—8inx

sin(47°) = f (% + 9"—0)

~r(5)+r @G B G
=_‘_+L(_"_)_;(1)2

V2 V2\90) T 32 \%0
~ 0,7313587.

15,

16.

17,
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f/ll(c)

3
' —) for some ¢ between 45°

The error is Ry = %0
Observe that’Rz < 0. If 45° <t < 47°, then

and 47°,

1
I/ (0] < | — cos45°| = ol K.

Hence, p ,
A
IR2l = 57 (55) < 0.0000051.

Since Ry < 0, therefore

0.7313587 — 0.0000051 < sin(47°) < 0.7313587
0.7313536 < sin(47°) < 0.7313587.

Sx) =sinx
J(x) = cosx
f"(x) = —sinx
S (x) = —cosx
f(4)(x) =sinx
a=0;, n="T
3 5 7
sinx=0+x—0—£—+0+x —o_f_+R7’
3! 71
3 5 7
X x> x
=x .~ 4R
~ar + 7 + R7(x)

sin¢
where R7(x) = ——8—~x3 for some ¢ between 0 and x.

!
For f(x) = cosx we have

S (x) = —cosx

f(s)(x) = —sinx

/" (x) =sinx

7O =

—sinx

Sx) =

TP ) = cosx —cosx,

The Taylor’s Formula for f witha=0and n =6 is

v2 x4 6
+___

cosv——l—— 2l a

+ Re( /3 0,x)

where the Lagrange remainder Rg is given by

ure

Re = Rs(f:0,x) = f7. ) 7=—7—X ,
for some ¢ between 0 and x.
f(x)—-sinx a—%, n=

T
f3| ( X) 24
where Ra(x) = -5-1-!(005 c) (x - %)5

s
for some ¢ between 7 and x.

167

Copyright © 2014 Pearson Canada Inc.



SECTION 4.10 (PAGE 280)

18, Given that f(x) = 1 , then

S) = l)yfﬂ)—zﬁgﬁ
In gcrbxeral,
S (x) = '(—1—%
Since a = 0, /" (0) = n!. Hence, for n = 6, the Taylor’s
Formula is

I SO0 .
_1__}.=f(0)+ZTx + Re(/f3 0, %)

n=]|

=14+x +x2+x3+x4+x5—i—x6+R6(f;0,x).

The Langrange remainder is

f(7)(c) o = x7

Re(f;0,x) = 7 X = T—of
for some ¢ between 0 and x.
19. S(x)=Inx
, 1
S &)= "
-1
') =~=
21
1 — __"
S0 =5
-3
f(4)(x) — _;_4__
x
SO =
X
_51
f(ﬁ)(x)— —x—i
6!
7 _ 2
=g
a=1, n=

ln\—0+l(x—l)———(,x—])2 2 (x—1)3

!
~ S ;u—n—au—mf&m
2 3 e
:(x—l)—(' 21) +(x 31) _(x41)
x=1)% @-ps
+(‘ 5 ) —(\'6) + R (x)

where Re(x) = ﬁ(x —1)7 for some ¢ between 1 and x.

20. Given that f(x) = tanx, then

I1(x) = sec?® x

JS"(x) = 2sec? x tanx
fm x)==6 scc.:4 x —4sec? x
f(4)(x) = 8tanx(3 sec* x — sec? x).
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Given that @ = 0 and » = 3, the Taylor’s Formula is
/'II(O) 2 fll/
21

2
—-x+§7x + R3(f; 0, x)

= +1 +2x5
=x 3x TS

anx = £0) + /O + L0 (mﬁ+Rx/0n

The Lagrange remainder is

AR 4> tanc(3 sec* X — sec? C) 4
=

R3(f;0,x)= A = 3

for some ¢ between 0 and x.

O = 3+ =3

Pi(x) =e? [1 +3(x+ 1+ %(x + 1%+ ;(x + 1)3}.

2B
For €, P4(u) = 1 +u + + 3 + ZT Let w = —x2.
Then for e~
4 6 8
x x
) =1—xt 4 —
g(x) =1 —x2 4= TREEY +

1 .
For sin®x = 3 (1 - cos(2x)) at x = 0, we have

i 22 (2x) 4
&w=zb—<uf;3+(ﬁ>}:ﬁ—%n

sinx = sin(n + (x — n)) = —siﬁ(x —1r)

Ps(e) = —(x — ) + & ;!”)3 - ‘x _5!”)5
For — atu = 0, P3(u) = 1+z/+u + 3. Let
u = —2x2. Then for -1—-—_‘-_1—2;5- atx =0,

Ps(x) = 1 — 2x% 4+ 4x* — 8x5,

cos(3x — ) = —cos(3x)
32x2  34p4 36,6 38,8
T T T
Since x3 = 0 + Ox + 0x2 4 x3 + 0x* + ... we have

Px)=0if0<n<2 P(x)=x>ifn>3
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1 .
inhx = —(e¥ —e™
sinh x 2(e e)

x2n+l
2! @n+1)!

1 '\,2 x2n+l
‘5(“’”2—!*“"(2—";7)7)

x3 N XS N x2n+l
=ttt oty

For In(1 + x) at x = 0 we have

1 x2
P2n+l(x)=-2- (l+x+—+...+

Pae1 () = x? N x3 - x2mtl
2m+1(X) = X 3 3 ' Ml
For In(1 — x) at x = 0 we have
» ( xZ ’\,3 .\’2"+|
21 () = =X 23 i+t
) 1 1
For tanh™' x = = In(1 + x) — = In(1 — x),
2 2
p ()_‘+x3+x5+ +x2n+l
=TT Ml
Sy =e™
ey — e ifniseven
S —e™" if nis odd
2 3 5
P VS O STIRROTIY A ¥ .
eV =1 X+2! 3!+ + (=1 n!'*‘Rn(l)
n+1
where R;(x) = (—1)”'H E for some X between 0
and x,
For x = 1, we have |
1 1 1 n
5= 1 —]+E—‘§T+”.+(—l) H+R’1(])
e—,\’xn-&-l
where R, (1) = (=1)"! m for some X between
—1 and 0. .

1
Therefore, |R;(1)] < ———. We want
n+ N
{R;(1)] < 0.000005 for 5 decimal places.

Choose » so that < 0.000005. n = 8 will do

n -+ 1!
since 1/9! =~ 0,0000027.
1

1 1 1 1
Thus

“aTntaTsta  ntw

~ (0.36788 (to 5 decimal places).

1
e

In Taylor’s Formulas for f(x) = sinx with g = 0, only
odd powers of x have nonzero coefficients. Accordingly
we can take terms up to order x?"+! but use the remain-
der after the next term 0x2'*2, The formula is

3 5

My=y— b (el
sinxy =x 3!+5! + (-1

2n+1

“__(2” +__l)! ‘*iR2n+2»

33,

34,

35.
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where

cosc
(2n +3)V

Rop42(f30,x) = (_1)n+l 2n+3

for some ¢ between 0 and x.

In order to use the formula to approximate

sin(1) correctly to 5 decimal places, we need

[Ron42(/3 0, )] < 0.000005. Since |cosc} < 1, it is
sufficient to have 1/(2n + 3)! < 0.000005. » =3 will do
since 1/9! = 0.000003. Thus

. 1 I i
sin(l) 1 = — 4 — — —

= 0.84147
3t st

correct to five decimal places.

Sy =(x—1% fE)=26x~1), [)=2
fx) ~1 —2x+%x2= 1—2x +x2

Error = 0

g(x)=x>+2x2 +3x +4

Quadratic approx.; g(x)~443x + 2x2

Error = x°

glll (C)

3 X3

Since g"”(c) = 6 = 3!, error =

| .
so that constant i in the error formula for the quadratic

approximation cannot be improved.

1—x" = (=)0 +x4+x2+x3 4+ +x"). Thus

n+l

|
=l .
1—x | —x

Iffx] <K <l then{l —x|>1—-K>0,so

xn-H

1
< ntly o n+l1
T | ")

l—x| " 1-—

asx — 0. By Theorem 11, the nth-order
Maclaurin polynomial for 1/(1 — x) must be
Po)=1+4x+4+x24x3 4 +x"

Differentiating
1 xn+1
—— = x4+ xi x4 X+
I —x 1 —x
with respect to x gives
! =142x+3x%+ +nx"_‘+n+l—nx !
(1=x)32 " ’ (1—x)?

Then replacing # with n + 1 gives

n+2—(n+1x

1
= 1420 +3x 24 (4 Dx"+
5 x+3x (n+1)x =7

(1—x)

169
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Ifjx| <K <I,then |l —x}>1— K > 0, and so
n+2—m+1)x e
(1~ x)? ’ = (1 -K)

asx — 0. By Theorem 11XXX, the nth-order
Maclaurin polynomial for'1/(I — x)? must be
Py(x) == 142x +3x2 4+ 4+ (n + Dx".

2
< n+ . Ix11+|] — 0(xn+l)

Section 4.11 Roundoff Error, Truncation Er-
ror, and Computers (page 284)

Since the normal rules of algebra (commutativity, asso-
ciativity, distributivity, etc.) don’t apply to floating-point
calculations, we should not expect the plots of mathemat-
ically equivalent expressions to be the same in all cases.

Since f(x) — Palx) = O(|x]’) as x approaches 0, on
this very small interval centred at zero we would expect
the graph to be the horizontal line through the origin.
Instead, there is a band of points having a peculiar struc-
ture. The plot can vary between different implementa-
tions of Maple on different operating systems, but some
of the four horizontal lines (actually envelop curves) pro-
posed in the exercise seem to provide natural boundaries
for most of the points.

As noted in section 4.7, a real number x can be repre-
sented in binary form as,

x =40.did> .. cdidi1diga .. ><.2p

where each of the base two digits d; is either 0 or 1,
but d) =1, and p is the appropriate power of 2.

Consider the floating point number, y (having the
same sign as x) given by ‘

y=20didr...dy x 107,

which has only ¢ significant binary digits. The distance
between x and y thus satisfies

¥ — | = 0dqidiqz -+ x 277,
Since d;+1 may or may not be I, this distance is less
than or equal to 2™, Thus F(x), the nearest floating

point number to x, can be no further than half that dis-
tance away, or

Ix — F(x)| < %2!’*' =2p=-1

It follows that

Iy — F(x)| < 2P < 27|x)

170
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because |x] > 2P~!. Clearly 27 is the smallest value
when added to 1 that will not be discarded thus

|F(x) — x| < €lx].

a) The result of question 3 suggests that computer pro-
duces a number C(1 + o) for one expression and
C(1 + p) for the other. a and £ will both be dis-
carded positive numbers that are both less than e
by assumption. Thus for each expression, individu-
ally the computer returns C, however the difference
between these two expressions is (o — $)C, where
(@ — B)| < ¢. Thus the computer returns a value for
the difference which is less than eC but not neces-
sarily equal to 0.

b) Yes. In certain éases, internal errors may grow suf-
ficiently that the computer returns a value different
from C, meaning that either or both of ¢ and § may
not be entirely discarded. The algorithm evaluating
such expression may be in need of improvement in
such a case, »

¢) Yes. In certain cases internal errors car be negligible
or zero, or they can cancel one another. Consider

for example the expression. 1 - V12, which will not
challenge machine precision at all.

Review Exercises 4 (page 285)

1. Since dr/dt = 2r/100 and ¥ = (4/3)xr3, we have

dv dr 4
LA Ly Y B VLS.
dr — 37 dr 100 ~ 100

Hence The volume is increasing at 6%/min.

2. a) Since F must be continuous at » = R, we have

mgR?
R2

=mkR, or k:g.
R

b) The rate of change of F as r decreases from R is

d
<——d—;(171k)'))

The rate of change of F as r increases from R is

mg
=—-mk=—-—=
R’

r=R

2mgR? mg

=— = 2=

PR & R

Thus F decreases as r increases from R at twice the
rate at which it decreases as r decreases from R,
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