- 39. $f(x) = x^n$ $g(x) = -x^n = -f(x), \quad n = 2, 3, 4, \dots$ $f'_n(x) = nx^{n-1} = 0 \text{ at } x = 0$ If n is even, f_n has a loc min, g_n has a loc max at x = 0.

 If n is odd, f_n has an inflection at x = 0, and so does g_n .
- 40. Let there be a function f such that

$$f'(x_0) = f''(x_0) = \dots = f^{(k-1)}(x_0) = 0,$$

 $f^{(k)}(x_0) \neq 0$ for some $k \ge 2$.

If k is even, then f has a local min value at $x = x_0$ when $f^{(k)}(x_0) > 0$, and f has a local max value at $x = x_0$ when $f^{(k)}(x_0) < 0$. If k is odd, then f has an inflection point at $x = x_0$.

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- a) $\lim_{x \to 0+} x^{-n} f(x) = \lim_{x \to 0+} \frac{e^{-1/x^2}}{x^n}$ (put y = 1/x) $= \lim_{y \to \infty} y^n e^{-y^2} = 0$ by Theorem 5 of Sec. 4.4 Similarly, $\lim_{x \to 0-} x^{-n} f(x) = 0$, and $\lim_{x \to 0} x^{-n} f(x) = 0$.
- b) If $P(x) = \sum_{j=0}^{n} a_j x^j$ then by (a)

$$\lim_{x \to 0} P\left(\frac{1}{x}\right) f(x) = \sum_{j=0}^{n} a_j \lim_{x \to 0} x^{-j} f(x) = 0.$$

c) If $x \neq 0$ and $P_1(t) = 2t^3$, then

$$f'(x) = \frac{2}{x^3}e^{-1/x^2} = P_1\left(\frac{1}{x}\right)f(x).$$

Assume that $f^{(k)}(x) = P_k\left(\frac{1}{x}\right)f(x)$ for some $k \ge 1$, where P_k is a polynomial. Then

$$f^{(k+1)}(x) = -\frac{1}{x^2} P_k'\left(\frac{1}{x}\right) f(x) + P_k\left(\frac{1}{x}\right) P_1\left(\frac{1}{x}\right) f(x)$$
$$= P_{k+1}\left(\frac{1}{x}\right) f(x),$$

where $P_{k+1}(t) = t^2 P_k'(t) + P_1(t) P_k(t)$ is a polynomial. By induction, $f^{(n)} = P_n\left(\frac{1}{n}\right) f(x)$ for $n \neq 0$, where P_n is a polynomial.

d)
$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} h^{-1} f(h) = 0$$
 by

(a). Suppose that $f^{(k)}(0) = 0$ for some $k \ge 1$. Then

$$f^{(k+1)}(0) = \lim_{h \to 0} \frac{f^{(k)}(h) - f^{(k)}(0)}{h}$$
$$= \lim_{h \to 0} h^{-1} f^{(k)}(h)$$
$$= \lim_{h \to 0} h^{-1} P_k \left(\frac{1}{h}\right) f(h) = 0$$

by (b). Thus $f^{(n)}(0) = 0$ for n = 1, 2, ... by induction.

- e) Since f'(x) < 0 if x < 0 and f'(x) > 0 if x > 0, therefore f has a local min value at 0 and -f has a loc max value there.
- f) If g(x) = xf(x) then g'(x) = f(x) + xf'(x), g''(x) = 2f'(x) + xf''(x). In general, $g^{(n)}(x) = nf^{(n-1)}(x) + xf^{(n)}(x)$ (by induction). Then $g^{(n)}(0) = 0$ for all n (by (d)). Since g(x) < 0 if x < 0 and g(x) > 0 if x > 0, g cannot have a max or min value at 0. It must have an inflection point there.
- 42. We are given that

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0; \\ 0, & \text{if } x = 0. \end{cases}$$

If $x \neq 0$, then

$$f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$
$$f''(x) = 2 \sin \frac{1}{x} - \frac{2}{x} \cos \frac{1}{x} - \frac{1}{x^2} \sin \frac{1}{x}.$$

If x = 0, then

$$f'(x) = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h} - 0}{h} = 0.$$

Thus 0 is a critical point of f. There are points x arbitrarily close to 0 where f(x) > 0, for example $x = \frac{2}{(4n+1)\pi}$, and other such points where f(x) < 0, for example $x = \frac{2}{(4n+3)\pi}$. Therefore f does not have a local max or min at f = 0. Also, there are points arbitrarily close to 0 where f''(x) > 0, for example $f''(x) = \frac{1}{(2n+1)\pi}$, and other such points where f''(x) < 0, for instance f = $\frac{1}{2n\pi}$. Therefore f does not have constant concavity on any interval f (0, f) where f = 0, so 0 is not an inflection point of f either.

27.
$$y = \frac{x^3 - 3x^2 + 1}{x^3} = 1 - \frac{3}{x} + \frac{1}{x^3}$$

 $y' = \frac{3}{x^2} - \frac{3}{x^4} = \frac{3(x^2 - 1)}{x^4}$
 $y'' = -\frac{6}{x^3} + \frac{12}{x^5} = 6\frac{2 - x^2}{x^5}$
From y : Asymptotes: $y = 1$, $x = 0$. Symmetry: none.

From y: Asymptotes: y = 1, x = 0. Symmetry: none. Intercepts: since $\lim_{x\to 0+} y = \infty$, and $\lim_{x\to 0-} y = -\infty$, there are intercepts between -1 and 0, between 0 and 1, and between 2 and 3.

Points: (-1,3), (1,-1), $(2,-\frac{3}{8})$, $(3,\frac{1}{27})$.

From y': CP: $x = \pm 1$.

From y'': y'' = 0 at $x = \pm \sqrt{2}$.

1.6. 110127

28. $y = x + \sin x$, $y' = 1 + \cos x$, $y'' = -\sin x$.

From y: Intercept: (0,0). Other points: $(k\pi, k\pi)$, where k is an integer. Symmetry: odd.

From y': Critical point: $x = (2k + 1)\pi$, where k is an integer.

From y'': y'' = 0 at $x = k\pi$, where k is an integer.

$$y'' + -2\pi - -\pi + 0 - \pi + 2\pi -$$

$$y \sim \inf \cap \inf \subset \inf \cap \inf \subset \inf$$

Fig. 4.6.28

29.
$$y = x + 2 \sin x, \quad y' = 1 + 2 \cos x, \quad y'' = -2 \sin x.$$

$$y = 0 \text{ if } x = 0$$

$$y' = 0 \text{ if } x = \frac{1}{2}, \text{ i.e., } x = \pm \frac{2\pi}{3} \pm 2n\pi$$

$$y'' = 0 \text{ if } x = \pm n\pi$$
From y: Asymptotes: (none). Symmetry: odd.

From y: Asymptotes: (none). Symmetry: odd. Points: $\left(\pm \frac{2\pi}{3}, \pm \frac{2\pi}{3} + \sqrt{3}\right), \left(\pm \frac{8\pi}{3}, \pm \frac{8\pi}{3} + \sqrt{3}\right), \left(\pm \frac{4\pi}{3}, \pm \frac{4\pi}{3} - \sqrt{3}\right).$

From y': CP: $x = \pm \frac{2\pi}{3} \pm 2n\pi$.

From y'': y'' = 0 at $x = \pm n\pi$.

$$y'' + -2\pi - -\pi + 0 - \pi + 2\pi -$$

$$y \sim \inf \cap \inf \subset \inf \cap \inf \subset \inf \cap$$

Fig. 4.6.29

 $y = e^{-x^2}$, $y' = -2xe^{-x^2}$, $y'' = (4x^2 - 2)e^{-x^2}$. From y: Intercept: (0, 1). Asymptotes: y = 0 (horizontal). Symmetry: even. From y': Critical point: x = 0.

From y": y" = 0 at
$$x = \pm \frac{1}{\sqrt{2}}$$
.

Fig. 4.6.30

31. $y = xe^x$, $y' = e^x(1+x)$, $y'' = e^x(2+x)$. From y: Asymptotes: y = 0 (at $x = -\infty$). Symmetry: none. Intercept (0, 0).

Points:
$$\left(-1, -\frac{1}{e}\right)$$
, $\left(-2, -\frac{2}{e^2}\right)$
From y' : CP: $x = -1$.

From
$$y''$$
: $y'' = 0$ at $x = -2$.

32.
$$y = e^{-x} \sin x$$
 $(x \ge 0)$, $y' = e^{-x} (\cos x - \sin x)$, $y'' = -2e^{-x} \cos x$. From y: Intercept: $(k\pi, 0)$, where k is an integer. Asymptotes: $y = 0$ as $x \to \infty$. From y': Critical points: $x = \frac{\pi}{4} + k\pi$, where k is an integer.

From y'': y'' = 0 at $x = (k + \frac{1}{2})\pi$, where k is an integer.

$$\frac{y'' \quad 0 \quad - \quad \frac{\pi}{2} \quad + \quad \frac{3\pi}{2} \quad - \quad \frac{5\pi}{2} \quad + \quad }{y \quad \qquad \inf \quad \qquad \inf \quad \qquad \inf \quad } \xrightarrow{\text{infl}}$$

Fig. 4.6.32

Since V(0) = V(35) = 0, the maximum value will occur at a critical point:

$$0 = V'(x) = 4(2625 - 220x + 3x^{2})$$

$$= 4(3x - 175)(x - 15)$$

$$\Rightarrow x = 15 \text{ or } \frac{175}{3}.$$

The only critical point in [0, 35] is x = 15. Thus, the largest possible volume for the box is

$$V(15) = 15(70 - 30)(150 - 30) = 72,000 \,\mathrm{cm}^3.$$

Fig. 4.8.18

Let the rebate be x. Then number of cars sold per month is

$$2000 + 200\left(\frac{x}{50}\right) = 2000 + 4x.$$

The profit per car is 1000 - x, so the total monthly profit is

$$P = (2000 + 4x)(1000 - x) = 4(500 + x)(1000 - x)$$
$$= 4(500, 000 + 500x - x^{2}).$$

For maximum profit:

$$0 = \frac{dP}{dx} = 4(500 - 2x) \Rightarrow x = 250.$$

(Since $\frac{d^2P}{dx^2} = -8 < 0$ any critical point gives a local max.) The manufacturer should offer a rebate of \$250 to maximize profit.

20. If the manager charges (40+x) per room, then (80-2x) rooms will be rented.

The total income will be (80 - 2x)(40 + x) and the total cost will be (80 - 2x)(10) + (2x)(2). Therefore, the profit is

$$P(x) = (80 - 2x)(40 + x) - [(80 - 2x)(10) + (2x)(2)]$$

= 2400 + 16x - 2x² for x > 0.

If P'(x) = 16 - 4x = 0, then x = 4. Since P''(x) = -4 < 0, P must have a maximum value at x = 4. Therefore, the manager should charge \$44 per room.

21. Head for point C on road x km east of A. Travel time is

$$T = \frac{\sqrt{12^2 + x^2}}{15} + \frac{10 - x}{39}.$$

We have $T(0) = \frac{12}{15} + \frac{10}{39} = 1.0564 \text{ hrs}$ $T(10) = \frac{\sqrt{244}}{15} = 1.0414 \text{ hrs}$

For critical points:

$$0 = \frac{dT}{dx} = \frac{1}{15} \frac{x}{\sqrt{12^2 + x^2}} - \frac{1}{39}$$

$$\Rightarrow 13x = 5\sqrt{12^2 + x^2}$$

$$\Rightarrow (13^2 - 5^2)x^2 = 5^2 \times 12^2 \Rightarrow x = 5$$

$$T(5) = \frac{13}{15} + \frac{5}{39} = 0.9949 < \begin{cases} T(0) \\ T(10) \end{cases}$$
(Or note that

$$\frac{d^2T}{dt^2} = \frac{1}{15} \frac{\sqrt{12^2 + x^2} - \frac{x^2}{\sqrt{12^2 + x^2}}}{12^2 + x^2}$$
$$= \frac{12^2}{15(12^2 + x^2)^{3/2}} > 0$$

so any critical point is a local minimum.)
To minimize travel time, head for point 5 km east of A.

Fig. 4.8.21

22. This problem is similar to the previous one except that the 10 in the numerator of the second fraction in the expression for T is replaced with a 4. This has no effect on the critical point of T, namely x = 5, which now lies outside the appropriate interval $0 \le x \le 4$. Minimum T must occur at an endpoint. Note that

$$T(0) = \frac{12}{15} + \frac{4}{39} = 0.9026$$
$$T(4) = \frac{1}{15}\sqrt{12^2 + 4^2} = 0.8433.$$

30. Let θ be the angle of inclination of the ladder. The height of the fence is

Fig. 4.8.30

For critical points:

$$0 = h'(\theta) = 6\cos\theta - 2\sec^2\theta$$

$$\Rightarrow 3\cos\theta = \sec^2\theta \Rightarrow 3\cos^3\theta = 1$$

$$\Rightarrow \cos\theta = \left(\frac{1}{3}\right)^{1/3}.$$

Since $h''(\theta) = -6\sin\theta - 4\sec^2\theta\tan\theta < 0$ for $0 < \theta < \frac{\pi}{2}$, therefore $h(\theta)$ must be maximum at $\theta = \cos^{-1}\left(\frac{1}{3}\right)^{1/3}$. Then

$$\sin \theta = \frac{\sqrt{3^{2/3} - 1}}{3^{1/3}}, \quad \tan \theta = \sqrt{3^{2/3} - 1}.$$

Thus, the maximum height of the fence is

$$h(\theta) = 6\left(\frac{\sqrt{3^{2/3} - 1}}{3^{1/3}}\right) - 2\sqrt{3^{2/3} - 1}$$
$$= 2(3^{2/3} - 1)^{3/2} \approx 2.24 \text{ m}.$$

31. Let (x, y) be a point on $x^2y^4 = 1$. Then $x^2y^4 = 1$ and the square of distance from (x, y) to (0, 0) is $S = x^2 + y^2 = \frac{1}{y^4} + y^2$, $(y \ne 0)$ Clearly, $S \to \infty$ as $y \to 0$ or $y \to \pm \infty$, so minimum S must occur at a critical point. For CP:

$$0 = \frac{dS}{dy} = \frac{-4}{y^5} + 2y \Rightarrow y^6 = 2 \Rightarrow y = \pm 2^{1/6}$$
$$\Rightarrow x = \pm \frac{1}{2^{1/3}}$$

Thus the shortest distance from origin to curve is

$$S = \sqrt{\frac{1}{2^{2/3}} + 2^{1/3}} = \sqrt{\frac{3}{2^{2/3}}} = \frac{3^{1/2}}{2^{1/3}}$$
 units.

32. The square of the distance from (8, 1) to the curve $y = 1 + x^{3/2}$ is

$$S = (x - 8)^{2} + (y - 1)^{2}$$

$$= (x - 8)^{2} + (1 + x^{3/2} - 1)^{2}$$

$$= x^{3} + x^{2} - 16x + 64.$$

Note that y, and therefore also S, is only defined for $x \ge 0$. If x = 0 then S = 64. Also, $S \to \infty$ if $x \to \infty$. For critical points:

$$0 = \frac{dS}{dx} = 3x^2 + 2x - 16 = (3x + 8)(x - 2)$$

$$\Rightarrow x = -\frac{8}{3} \text{ or } 2.$$

Only x=2 is feasible. At x=2 we have S=44<64. Therefore the minimum distance is $\sqrt{44}=2\sqrt{11}$ units.

33. Let the cylinder have radius r and height h. By symmetry, the centre of the cylinder is at the centre of the sphere. Thus

$$r^2 + \frac{h^2}{4} = R^2.$$

The volume of cylinder is

$$V = \pi r^2 h = \pi h \left(R^2 - \frac{h^2}{4} \right), \quad (0 \le h \le 2R).$$

Clearly, V = 0 if h = 0 or h = 2R, so maximum V occurs at a critical point. For CP:

$$0 = \frac{dV}{dh} = \pi \left[R^2 - \frac{h^2}{4} - \frac{2h^2}{4} \right]$$
$$\Rightarrow h^2 = \frac{4}{3}R^2 \qquad \Rightarrow h = \frac{2R}{\sqrt{3}}$$
$$\Rightarrow r = \sqrt{\frac{2}{3}}R.$$

The largest cylinder has height $\frac{2R}{\sqrt{3}}$ units and radius $\sqrt{\frac{2}{3}}R$ units.

Fig. 4.8.33

f''(x) < 0 on [81, 85] so error is negative: $\sqrt[4]{85} < \frac{82}{27}$ $|f''(x)| < \frac{3}{16 \times 3^7} = \frac{1}{11,664} = k$ on [81, 85]. Thus $|\text{Error}| \le \frac{k}{2}(85 - 81)^2 = 0.00069$.

$$\frac{82}{27} - \frac{1}{1458} < \sqrt[4]{85} < \frac{82}{27}$$

or $3.036351 < \sqrt[4]{85} < 3.037037$

18. Let
$$f(x) = \frac{1}{x}$$
, then $f'(x) = -\frac{1}{x^2}$ and $f''(x) = \frac{2}{x^3}$.

$$\frac{1}{2.003} = f(2.003) \approx f(2) + f'(2)(0.003)$$
$$= \frac{1}{2} + \left(-\frac{1}{4}\right)(0.003) = 0.49925.$$

If $x \ge 2$, then $|f''(x)| \le \frac{2}{8} = \frac{1}{4}$. Since f''(x) > 0 for x > 0, f is concave up. Therefore, the error

$$E = \frac{1}{2.003} - 0.49925 > 0$$

and

$$|E| < \frac{1}{8}(0.003)^2 = 0.000001125.$$

Thus,

$$0.49925 < \frac{1}{2.003} < 0.49925 + 0.000001125$$

 $0.49925 < \frac{1}{2.003} < 0.499251125.$

 $f(x) = \cos x, \quad f'(x) = -\sin x, \quad f''(x) = -\cos x$ $\cos 46^\circ = \cos\left(\frac{\pi}{4} + \frac{\pi}{180}\right)$ $\approx \cos\frac{\pi}{4} - \sin\left(\frac{\pi}{4}\right)\left(\frac{\pi}{180}\right)$ $= \frac{1}{\sqrt{2}}\left(1 - \frac{\pi}{180}\right) \approx 0.694765.$

$$f''(0) < 0$$
 on [45°, 46°] so

$$|\text{Error}| < \frac{1}{2\sqrt{2}} \left(\frac{\pi}{180}\right)^2 \approx 0.0001.$$

We have

$$\frac{1}{\sqrt{2}} \left(1 - \frac{\pi}{180} - \frac{\pi^2}{2 \times 180^2} \right) < \cos 46^\circ < \frac{1}{\sqrt{2}} \left(1 - \frac{\pi}{180} \right)$$

i.e., $0.694658 \le \cos 46^{\circ} < 0.694765$.

20. Let
$$f(x) = \sin x$$
, then $f'(x) = \cos x$ and $f''(x) = -\sin x$. Hence,

$$\sin\left(\frac{\pi}{5}\right) = f\left(\frac{\pi}{6} + \frac{\pi}{30}\right) \approx f\left(\frac{\pi}{6}\right) + f'\left(\frac{\pi}{6}\right)\left(\frac{\pi}{30}\right)$$
$$= \frac{1}{2} + \frac{\sqrt{3}}{2}\left(\frac{\pi}{30}\right) \approx 0.5906900.$$

If $x \le \frac{\pi}{4}$, then $|f''(x)| \le \frac{1}{\sqrt{2}}$. Since f''(x) < 0 on $0 < x \le 90^{\circ}$, f is concave down. Therefore, the error E is negative and

$$|E| < \frac{1}{2\sqrt{2}} \left(\frac{\pi}{30}\right)^2 = 0.0038772.$$

Thus,

$$0.5906900 - 0.0038772 < \sin\left(\frac{\pi}{5}\right) < 0.5906900$$
$$0.5868128 < \sin\left(\frac{\pi}{5}\right) < 0.5906900.$$

21. Let $f(x) = \sin x$, then $f'(x) = \cos x$ and $f''(x) = -\sin x$. The linearization at $x = \pi$ gives:

$$\sin(3.14) \approx \sin \pi + \cos \pi (3.14 - \pi) = \pi - 3.14 \approx 0.001592654.$$

Since f''(x) < 0 between 3.14 and π , the error E in the above approximation is negative: $\sin(3.14) < 0.001592654$. For $3.14 \le t \le \pi$, we have

$$|f''(t)| = \sin t < \sin(3.14) < 0.001592654.$$

Thus the error satisfies

$$|E| \le \frac{0.001592654}{2} (3.14 - \pi)^2 < 0.000000002.$$

Therefore $0.001592652 < \sin(3.14) < 0.001592654$.

22. Let $f(x) = \sin x$, then $f'(x) = \cos x$ and $f''(x) = -\sin x$. The linearization at $x = 30^{\circ} = \pi/6$ gives

$$\sin(33^\circ) = \sin\left(\frac{\pi}{6} + \frac{\pi}{60}\right)$$

$$\approx \sin\frac{\pi}{6} + \cos\frac{\pi}{6}\left(\frac{\pi}{60}\right)$$

$$= \frac{1}{2} + \frac{\sqrt{3}}{2}\left(\frac{\pi}{60}\right) \approx 0.545345.$$

Since f''(x) < 0 between 30° and 33°, the error E in the above approximation is negative: $\sin(33^\circ) < 0.545345$. For 30° < $t < 33^\circ$, we have

$$|f''(t)| = \sin t \le \sin(33^\circ) < 0.545345.$$

Thus the error satisfies

$$|E| \le \frac{0.545345}{2} \left(\frac{\pi}{60}\right)^2 < 0.000747.$$