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Therefore F(x) = /x2 dx = %x:’ 4 C. Since

F() = C = 0, therefore F(x) = 4x3. Forx = 2,
the area of the region is F(2) = § square units.

a) The shaded area A in part (i) of the figure is less
than the area of the rectangle (actually a square)
with base from ¢ = 1 to t = 2 and height 1/1 = 1.

Since In2 = 4 < I, we have 2 < el =e;ie,e> 2.
» @) » (i)

Fig. 3.3.75

by If £(r) = 1/t, then f'(t) = —1/1* and
S =2/ > 0fort > 0. Thus f'(*) is an
increasing function of ¢ for 1 > 0, and so the graph
of f(¢) bends upward away from any of its tangent
lines. (This kind of argument will be explored fur-
ther in Chapter 5.)

¢) The tangent to y = 1/f at ¢ = 2 has slope —1/4. It
equation is :

11 )
y=5—4—(x—2) ory.—_l——}.
The tangent to y = 1/¢ at 1 = 3 has slope —1/9. Its
equation is
I 1 2 x
y—§~§(x—3) ory=z-g

d) The trapezoid bounded by x = 1, x = 2, y = 0, and
y = 1—(x/4) has area

1/3 1 5
’“*5(3*5)—5'

The trapezoid bounded by x = 2, x = 3, y = 0, and
y = (2/3) — (x/9) has area

PRI A
273\ 3) T 18

5 7 73
n3> A1 +Ar==+—==-—>1.
) md>Aditd=gtg=7n"
Thus 3 > ¢! = e. Combining this with the result of
(a) we conclude that 2 < e < 3.

10,

11.

SECTION 3.4 (PAGE 189)

Section 3.4 Growth and Decay (page 189)

3

. _ Lo X . .
lim x3%¢™ = lim = = 0 (exponential wins)
N> 00 x>0 e¥

X

lim x3¢' = lim ~= =00
X—»00 ¥—=00 X
i 2" ~3 . 2—3e™% _ 2—-0 —
e +5 +500 T+5e> 140"
x —2e7¥ . 1=2/(xe*) 1-0

i —_— = = =
A Y 1 3e"  xo% 1 t+3/(xe) 140

lim xInx =0 (power.wins)
x—0+

lim x(n |x])*> =0
x—0

3
lim (Inx)
N> 00 X

=0 (power wins)

Let N(f) be the number of bacteria present after ¢ hours.
Then N(0) = 100, N(1) = 200.

d y '
Since —;],! = kN we have N(f) = N(0)e" = 100e¥.

Thus 200 = % Q0e* and k = In2.

Finally, N -2-> = 100e5/212 ~ 565,685,

There will be approximately 566 bacteria present after
another 1% hours.

Let p(7) be the number of kg undissolved after ¢ hours.
Thus, y(0) = 50 and y(5) = 20. Since y'(t) = ky(1),
therefore y(f) = y(0)eX = 50e*'. Then

— Sk 1 2
20=y(5) =50 = k==zlnz.

If 90% of the sugar is dissolved at time 7T then
5= y(T) = 50¢*T, so

po by LSO
Tk 10 (04

12.56.

Hence, 90% of the sugar will dissolved in about 12.56
hours.

Let P(t) be the percentage undecayed after ¢ years.
Thus P(0) = 100, P(15)=170.

dp
Since - = kP, we have P(1) = P(0)eX = 100&.

. 1
Thus 70 = P(15) = 100e'* so k = 5 1n(0.7).
The half-life T satisfies if 50 = P(T) = 100e*7, so
1 151n(0.5
T=v In(0.5) = 151n(0.3) 59,15,
K

In(0.7)
The half-life is about 29.15 years,
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SECTION 3.4 (PAGE 189)

Let P(¢) be the percentage remaining after 1 years. Thus
P'(¢) = kP(t) and P(1) = P(0)e¥ = 100", Then,
100690k

50 = P(1690) = k———ln—~00004101

1690

a) P(100) = 100e'%% = 95,98, i.e., about 95.98%
remains after 100 years,
b) P(1000) = 100e'00%
remains after 1000 years,

66.36, i.e., about 66.36%

Let P(f) be the percentage of the initial amount remain-
ing after ¢ years.

Then P(f) = 100" and 99.57 = P(l) = 100€X,

Thus & = In(0.9957).

The half-life T satisfies 50 = P(T') = 100e7,
1 In(0.5)
T = 1 0.5) = ——— ~ 160.85.
50 05 = {0995

The half life is about 160.85 years.

Let N(¢) be the number of bacteria in the culture ¢ days
after the culture was set up. Thus N(3) = 3N(0) and
N(7) = 10 x 105, Since N(1) = N(0)e!, we have

3IN@©) = NG3) = NO)e* = k= §1In3.
0" = N(7) = N(0)e™ = N(0) =

There were approximately 770,000 bacteria in the cul-
ture initially. (Note that we are approximating a discrete
quantity (number of bacteria) by a continuous quantity
N(#) in this exercise.)
Let W(t) be the weight ¢ days after birth.
Thus W(0) = 4000 and W (r) = 4000,

1
Also 4400 = W (14) = 4000e'¥, is k = 77 (D,
Five days after birth, the baby weighs .
W (5) = 4000e0/191(1-1)  4138.50 A 4139 grams.

Since

') = k() = 1(1) = 1(0)e" = 40e¥,
15

In— =

1
15 = 1(0.01) = 4090 = = —
0.01) = 40" = k=551 " %o

3
10010 2,
"3

thus,
3 3\ 1oor
1(r) = 40 exp (1001 In §) =40 (§) )

$P invested at 4% compounded continuously grows to
$P(e*7 = §PeV28 in 7 years. This will be $10,000 if

_$P =$10, 000928 — $7, 557,84,

Let y(r) be the value of the investment after / years.
Thus y(0) = 1000 and y(5) = 1500. Since
y(t) = 10006"’ and 1500 = y(5) = 1000e°*, therefore,
k= ln

7

92
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a) Let / be the time such that y(f) = 2000, i..,

1000 = 2000

1 5In2
an:—n——

- 5T = 8.55.
k In(5)

= (=

Hence, the doubling time for the investment is about
8.55 years,

b) Let »% be the effective annual rate of interest; then

1000(1 + 100) = y(1) = 1000¢*
=r = 100(* — 1) = 100[exp (+ In 3) — 1]
= 8.447.

The effective annual rate of interest is about 8.45%.

Let the purchasing power of the dollar be P(¢) cents af-
ter { years.

Then P(0) = 100 and P(f) = 100X,

Now 91 = P(1) = 100&* so k = In(0.91).

If25 = PG) = 100" then

I 1n(0.25)
= ~In(0.25) = ~ 14.7
t= g In0.25) =5 0n

The purchasing power will decrease to $0.25 in about
14.7 years.

Let i% be the effective rate, then an original investment
of $4 will grow to $A(1 + ——) in one year. Let »%

100
be the nominal rate per annum compounded » times per

year, then an original investment of $4 will grow to

n
p
Al1
§ ( + IOOn)

in one year, if compounding is performed n times per
year. For i = 9.5 and n = 12, we have

12

9.5 r

A — ] =%4 —_
s <1+ 100) s (H 1200)

- 1200( /1,095 — 1) =9.1098.

The nominal rate of interest is about 9.1098%.

Let x(¢) be the number of rabbits on the island ¢ years
after they were introduced. Thus x(0) = 1,000,

x(3) = 3,500, and x(7) = 3,000. For/ < 5 we have
dx/dt = kyx, so

x(1) = x(0)e"! = 1,000

x(2) = 1,000e% =3,500 = 1 =35
, NS/
x(5) = 1,000k = 1,000(e2"‘) = 1,000(3.5)%/>

A 22,918,
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For ¢ > 5 we have dx/df = kyx, so that

x(1) = x(5)ek ) :
Pk, 3,000
22,918

. \5/2 3,000 \*/?
x(10) = x(5)3%2 = x(5) (32/‘2) ~2 22,918 (‘—'9‘>

x(7) = x(5)e?*? =3,000 =

22,918
~ 142,

so there are approximately 142 rabbits left after 10 years.

22. Let N(¢) be the number of rats on the island 7/ months
after the initial population was released and before the
first cull. Thus ¥(0) = R and N(3) = 2R. Since
N(f) = Ret, we have e3* = 2, so ¢¥ = 2!/3. Hence
N(5) = Re* = 25/3R. After the first 1,000 rats
are killed the number remaining is 253 R — 1,000. If
this number is less than R, the number at the end of
succeeding S-year periods will decline. The minimum
value of R for which this won’t happen must satisfy
25/3R—1,000 = R, that is, R = 1,000/(2%% —1) ~ 459.8,
Thus R = 460 rats should be brought to the island ini-
tially.

23, ['xy=a+bf(x)..

a) Ifu(x) = a + bf(x), then
W' (x) = bf'(x) = bla + bf(x)] = bulx).
This equation for u is the equation of exponential
growth/decay. Thus

u(x) = Cye®,

_1 by _ N _ x4
Sx)y= 5 (Cle a) = Ce 3

d
b) If Zi% = g + by and y(0) = yg, then, from part (a),

_ bx 4 — o_ 49
y=Ce 5’ yo=Ce 5
Thus C = yo + (a/b), and
(ot Pt @
y= (yo+b)e -
24, a) The concentration x(¢) satisfies d_x = a — bx().

This says that x(¢) is increasing if it is less than a/b
and decreasing if it is greater than a/b. Thus, the
limiting concentration is a/b.

SECTION 3.4 - (PAGE 189)

b) The differential equation for x(¢) resembles that of
- Exercise 21(b), except that y(x) is replaced by x(/),
and b is replaced by —b. Using the result of Exer-

cise 21(b), we obtain, since x(0) =0,

x() = (x(©) - %)e“”’ +2

b
-§0-)

¢) We will have x(1) = L(a/b) if 1 —e7® = 1, that is,

if e = 1 or —bt = In(1/2) = —In2. The time
required to attain half the limiting concentration is

t = (In2)/b.

25. Let T(¢) be the reading ¢ minutes after the Thermometer
is moved outdoors. Thus 7(0) = 72, T(1) = 48.

By Newton’s law of cooling, = k(T — 20).

dr
dv

If V(1) = T(1) =20, then —~ = kV, so

V() = V(0)et = 52¢H, '

Also 28 = V(1) = 52¢*, so k = In(7/13).

Thus V(5) = 52¢°7/13) ~ 2,354, Att = 5 the ther-

mometer reads about T(5) = 20 + 2.354 = 22.35°C.

26. Let T(¢) be the temperature of the object f minutes after
its temperature was 45°C. Thus 7(0) =45 and

dT

T(40) = 20, Also W = k(T + 5). Let
zzj(t) =d77:(1) + 5, so u(0) = 50, u(40) = 25, and
u
— = — =k(T +5) = ku. Thus,
i ’r k(T +5) = ku us

u(t) = 50€,

25 = u(40) = 50e%,

125 1]

#k:mlnso—-%nz.

We wish to know f such that T(¢) = 0, i.e, u(t) = 5,
hence

5= u(r) = 50e
401n (%)
=N = 132.88 min.
In (—)
2
Hence, it will take about (132.88 — 40) = 92.88 minutes

more to cool to 0°C.
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SECTION 3.4 (PAGE 189)

Let T(s) be the temperature of the body ¢ minutes after it 31.
was 5°,
Thus T(0) =5, T(4) = 10. Room temperature = 20°,

dT
By Newton’s law of cooling (warming) - = k(T —20).

dv
If V(1) = T(t) — 20 then = = kv,
s0 V(1) = V(0)ek = —15¢", ' :
1 2
Also —10 = V(4) = —15e¥, so k = 7 In <§>
If T(t) = 15°, then —5 = V(1) = —15¢
In l
sot-—]ln 1 =4 3 =~ 10.838
Tko\3) 2 DA
In{3 32
It will take a further 6.84 minutes to warm to 15°C.

By the solution given for the logistic equation, we have

LIy
yo+ (L — yo)e™2

Lyo

- yo+ (L — yo)e™*’ 72

N

Thus y1(L — yo)e ¥ = (L — y1)yo, and
y2(L = yo)e™ = (L — y2)yo.
Square the first equation and thus eliminate ek

((L —,vn)yo)2 _ T =yIx
»i(L — yo) y2(L — yo)

33.

Now simplify: yoy2(L — y1)* = y{(L — yo)(L — y2)
yoyzL2—~2y1yoy2L+yoy,2yz = y,zLZ—ylz(yo+y2)L+}’0)’%)’2

(o + 2) — 2yoy1 32
¥ — yoy: '

If yo =3, y1 =5, y» = 6, then
25(9) — 180 45 1
L= —————— = — = 6429, .
25—~ 18 7 :

The rate of growth of y in the logistic equation is 2,

Since . 4.
dy  k LY’ Lk
AR
d L
thus —c.z'-}ti is greatest when y = 5 . 6.

Ly
'—)0"'“:/\'7 is valid on the
s Yo + (L — yo)e 7
largest interval containing ¢ = 0 on which the denomina- '
tor does not vanish,

If yo > L then yo + (L ——yo)e“k’ =0 if 8,

The solution y =

Then the solution is valid on (t*, c0).
lim;, ey (1) = 00,
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The solution
Lyo

y=—""3

yo+ (L = yo)e™¥
of the logistic equation is valid on any interval containing
¢{ = 0 and not containing any point where the denomina-

tor is zero. The denominator is zero if yo = (yo—L)e™¥,

that is, if
1 Yo
[:I*:-——l '
k n(yo—L)

Assuming k and L are positive, but yg is negative, we
have ¢* > 0. The solution is therefore valid on (—oo0, ¢*).
The solution approaches —co as { — (*—.

L
YO = T e
200 = y(0) = ——
YO =15
1,000 = y(1) = L
S = T T Me®

10,000 = lim y() =L

Thus 200(1 + M) = L = 10, 000, so M =49, Also
1,000(1 -+ 49¢~*) = L = 10,000, so e™% = 9/49 and
k = In(49/9) ~ 1.695.

L 10, 000
3) = = i ~ 7671
YO = T e * = 11 490298 eases
) LkMe™*
y@3)= 0T My = 3, 028 cases/week,

Section 3.5 The Inverse Trigonometric Func-
tions (page 197)

sin(sin™! 0.7) = 0.7

cos(sin™! 0.7) = /1 — sin?( arcsin 0.7)
=/1=0.49 = /051
2
tan™" (tan —3”—) = tan"N(—/3) = ——%
sin™! (cos40°) = 90° — cos ™! (cos 40°) = 50°
cos™! (sin(—0.2)) = % —sin™! (sin(——0.2))
T

=—=402
2+
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SECTION 3.5 (PAGE 197)

10. sin(cos"'(~%)) = \ﬁ— cos? (arccos (—%) 2. y= cos”! x—b
a
— ] 1 —_ «/—8- — 2ﬁ y, = — 1 l
9 3 3 | (X - b)2 a
—1 1 1 (12
11, cos{tan =71 _1
sec (tan—' 5) = ——————m (assuming) a > 0).
1 2
= = 75 22, f(x)=xsin"' x
1 X
1 + tan? (tan‘l ~> "(x) = sin! x + ———.
\/ 2 f /T— x2
—1
12. tan(tan™" 200) = 200 23, J=ttan" ,
[y =tan"" 1 +
13, sin{cos™' x) = /1 — cos?(cos~! x) 1412
=1 —=x2 24, u=z%sec” (1 +2%)
du —1 2 22(22)
14. cos(sin™! x) = /1 —sin? (sin~! x) = V1 — x? dz 2zsec (1429 + (1 +22)/(0 +2)2 -1
2223gn ()
_ 1 1 =2zsec”! (1 +2%) + —————
15. cos(tan™'x) = seo(an—Tx) = Vi ) (1 +2)/z22+2
25, Fx)=(+xHtan'x
16. tan(arctanx) = x = sec(arctanx) = v'1 4]—x2 F'(x) = 2x tan~! x + 1
= cos{arctanx) =
( ) VT+ 2 26, y= sin™! (%) (ix1 > lal)
= sin(arctanx) = lx > . , 1’ a a
tx y——lw[‘x—z]*‘ﬁ_—‘m
. — -\~
17. tan(cos™' x) = w *
cos(cos—! x sin—! x
N . 27. G(x)= ——r—
_ VI - " (by # 13) sin~! (2x)
2 1 2
R ) P—— sin”! ¥ ———
| T ST G'x) = V1 =x? A1 —4x2
18. cos(sec™'x) = - = sin(sec™x) = /1 — = = ™ - (sin—‘ (2x))2
) X
= tan(sec™'x) = Vx? — lsgnx V1T —ax2sin~! 2x) — 2/T—x2sin~ x
_VATST ifxzd T a2 i (20 )
_{_m iFx <1 1 —x*+/1 —4x (sm (2x))
P
2x — 1 sin
— qin—! 28, H@) =
19, y=sin ( 3 ) @ sint
y = ! 2 sint (Jl—f) —sin~! ¢ cos?
3 H,(t) - 11—t

. 2
1—(2'\ 1) sin? ¢
3 . 1 (1 sin=!
3 9 —m—csclco f sin

— 2 _
? 1(4" b 29, f(x) = (sin~' x|/

t

= | , 2
24 x—x2 fx) = E(sin”‘ xz)_'/z—x
—X
X
20, y=tan"! (ax +b), L — =—
) ( ) YETT (ax + b)? 1 —x*/sin—! x2
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SECTION 3.5 (PAGE 197)

) = cos™! < a ) 36.
Var +x?
@ \7'* oa
y = ——(l - +x2> [*5(02 +x2)_3/2(2x)]
__asgn (x)
T a2 4 x?
y=+va®—x%+asin”! z
a |
;L X + a 1
Y Va2 - x2 24
1~
a’ 37.
a—x a—x
===, @0
y =acos™! (l - 5) - V2ax — x? (@a>0)
) [] (1 x)z]"‘/2< 1) 20 — 2x
) = —q — —— —— — ——
) a a 24/ 2ax — x?
x
© V2ax — «2
_1 (Zx) TXx
tan — ==
y y
1 2y—2xy y2 —2xyy
wr 2 A
1+ =5
g 142y 4 —4y'
At (1,2) = =
b2 =" )
8— 4y —dn —duy = y' = Z 1
' -2
At (1, 2) the slope is r
T —
38.

1
If y = sin™! x, then ' = —=——==. If the slope is 2
1 —x2

then

) 3
> = 2 so that x = i_ZC' Thus the equations

l—x
of the two tangent lines are
3 3
y= %+2(x——§> and 3):-13[-+2(x+\—g:>.
A G ly=— > 0on (-1,
dx T2 T

1

Therefore, sin™' is increasing.

I
zj—x~tan_l X = T > 0 on (—o0, 00).
Therefore tan~! is increasing,
1
aCOS_I X = "'—1-\/..:——’\.__‘5 < 0on (—1, ]).

Therefore cos™' is decreasing.
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Since the domain of sec™! consists of two disjoint inter-
vals (—oo, —1] and [1, 00), the fact that the derivative of
sec™! is positive wherever defined does not imply that
sec™! is increasing over its whole domain, only that it is
increasing on each of those intervals taken independently.
In fact, sec™! (=1) = & > 0 = sec™! (1) even though
-1 <1,

d cselx = sin™! 1 :
dx - x
- ()
= - =
I—=
X
]
xlvx2 =1
y
&
x#
y= ese™ x
(=1,—7/2)
Fig. 3.5.37
cot™! x = arctan (1/x);
| - 1
—1
—cot™ x = — ==
o cot™' x 1 ) 12
ta
X
Y 7/2
y = cot™ x
X
—n /2
Fig. 3.5.38

Remark: the domain of cot™! can be extended to include
0 by defining, say, cot™' 0 = z/2. This will make cot™!
right-continuous (but not continuous) at x = 0. It is also
possible to define cot™! in such a way that it is contin-
uous on the whole real line, but we would then lose the
identity cot™' x = tan~'(1/x), which we prefer to main-
tain for calculation purposes.
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I
39, i(tan"I x4cot ' x)= i tan'x + tan~! =
dx dx X

1 1 1
I+

X
'x +cot™!x = C| (const. for x > 0)

Thus tan™
T

Atx =1 h —4+—=C

X we have 7 + 7 ; ]
Thus tan™! x + cot™ x = 5 for x > 0.
Also tan~! x + cot™' x = C; for (x < 0).
At x = —1 weget—£—£=C2

H 4 47[ .
Thus tan~! x 4+ cot™' x = -3 for x < 0.
40. Ifglx)= tan(tan™! x) then

sec? (tan™! x)

/ - —
gx) = 1+ x2
B 1 + [tan(tan™" x))? _ 1+ x? _
- 1 +x2 Tl 4x2

If h(x) = tan~! (tanx) then h is periodic with period =,

and

SCC2 X

Wix)= ——— =
x) 1 +tan? x

provided that x # (k+ %)7[ where k is an integer. h(x) is
not defined at odd multiples of 7—;-

¥ ¥

y=tan(tan”' x) /

(w/2,n/2)

%
v

y=tan~! (tan x)

s

Fig. 3.5.40(a) Fig. 3.5.40(b)

41. icos“'(cosx) = (—sinx)
dx

-1
1 —cos?x
_[l if sinx > 0
T l-1 ifsinxy <0

os~ ! (cos x) is continuous everywhere and differen-
tiable everywhere except at x = nz for integers »n.

Y !
y = cos” ' (cos x)

4

Fig. 3.5.41

SECTION 3.5 (PAGE 197)

1
——(~sinx)
VT —cos? x

:{-—l if sinx >0
1

ifsinx <0
sin~!(cos x)} is continuous everywhere and differen-
tiable everywhere except at x = nz for integers n.

y
/2

/\—/\/\
NN

42, i sin"!(cosx) =
dx

y= sin~! (cos x)

Fig. 3.5.42

d
43, —tan"'(tanx) = (sec’? x) = 1 except at odd

mulnples of n/2.

1
1 +tan? x

tan~! (tan x) is continuous and differentiable every-
where except at x = (2n + )z /2 for integers ». It is not
defined at those points.

/: / 7 /2
/ /_,,

y = tan~' (tanx)

/o
/7[ /,\

Fig. 3.5.43

d 1
44, d—;tan"'(cot\‘) W( csc?x) = —1 except at

integer multiples of x.

tan~!(cot x) is continuous and differentiable every-
where except at x = nzx for integers n. It is not defined

at those points.
\ "/
AN
AN

Fig. 3.5.44

= tan~!(cotx)

NN
NN
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Let the length, width, depth, and volume at time ¢ be /,
w, h and ¥ respectively. Thus V = /wh, and

ar _ di I+11d + 1 dh
ar Talt T T
If 7 = 6 cm, w =5cm, h= 4em, % = %]11 = lm/s, and
do _ —2cm/s, then
dr ’
AV a0 4g+30=2.
dt

The volume is increasing at a rate of 2 cm/s.

Let the length, width and area at time ¢ be x, y and 4
respectively. Thus 4 = xy and

dA a’y dx

ar ~a trar
dA dx
If — — =10,x = = {]
f 7 =35, T 0, x =20, y = 16, then
dy dy 31
5=20— +16(1 = =
Odt + 16(10) => T y

31
Thus, the width is decreasing at vy m/s,

dy dx dx
. Th —_2—If = —2and — = -3,
r= y 7 a me
then d—’r = —4(-3) = 12. y is increasing at rate 12,

Since x2y3 = 72, then

3dx dy dy 2y dx
2 322 =0 L= 2
AR =0s =y
d. d 8
Ifx =3,y=2 -6—]—’:— = 2, then d_)t) =—3 Hence, the

vertical velocity is -3 units/s.

We have
X = v——dy + dx _ 1
r= ar " Yar T
dy dx
2
y=&°= — i =x4 ’d!

Atr=2wehave xy =2, y=2x2 = 2x3 =2 = x =1,

y=12
dy dx dx dy
Thus 22 4222 = I +4—=—=,
_Thus i ;— 7 ldand +4g’ i
Y
So 1 6— =1 = — =1
ol+ a1 = — i =0= i =

VX2 4+ y2 So

Distance D from origin satisfies D =

ab _ | ( NLLSNP dy)

at ~ofaaa\ T
1 2
(10 +20m) = =

110

16.

17.

18.

ADAMS and ESSEX: CALCULUS 8

The distance from the origin is increasing at a rate of

2//5.

From the figure, x2 + k% = s%. Thys

dx ds
.

dt dt

When angle PCA = 45°, x =k and s = +/2k. The radar
gun indicates that ds/dt = 100 km/h. Thus

dx/di = 1003/2k/k = 141, The car is travelling at about
141 km/h.
A C
’,.'_,’ % Q
,"Ik . 's,
y//
P
Fig. 4.1.16

We continue the notation of Exercise 16. If dx/dt = 90
km/h, and angle PCA = 30°, then s = 2k, x = ﬁk, and
ds/dt = (/3k/2k)(90) = 454/3 = 77.94. The radar gun
will read about 78 km/h,

Let the distances x and y be as shown at time ¢, Thus
d
x4 y? =25 and 2xd—x +2y—6-{2:- =0.

dt
dx 1 4 dy
f— = - = = _ 2
Ia’t 3andy 3, then x = 4 and +3d 0 so
dy __4
a9

4
The top of the ladder is slipping down at a rate of 7
m/s.

—
173 w/s

Fig. 4.1.18
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20.

INSTRUCTOR’S SOLUTIONS MANUAL

Let x and y be the distances shown in the following fig-
ure. From similar triangles:

x x4ty 2y dx 2dy
2= s YT ER T T T 3ar
dy i

Si —— =—=—,th

ince 7 5 en
dx I d 1 5
(—j-’—-——gandzﬁ(.\—{-y)—“i‘—g——"g.

Hence, the man’s shadow is decreasing at %m/s and the
shadow of his head is moving towards the lamppost at a
rate of gm/s.

h
y ‘. |
fle 4119

Fig. 4.1.20

Refer to the figure. s, y, and x are, respectively, the
length of the woman’s shadow, the distances from the
woman to the lamppost, and the distances from the
woman to the point on the path nearest the lamppost.
From one of triangles in the figure we have

y2 = x% 425,

If x = 12, then y = 13. Moreover,

dy dx
2y — =2x —.
> 2 dt

21,

22,

23,

SECTION 4.1 (PAGE 218)

We are given that dx/dt = 2 ft/s, so dy/dt = 24/13 fi/s
when x = 12 ft. Now the similar triangles in the figure
show that
' s sty
6 15°
so that s = 2y/3. Hence ds/di = 48/39. The woman’s
shadow is changing at rate 48/39 ft/s when she is 12 ft
from the point on the path nearest the lamppost.
x2
C =10,000 4 3x + 8,000

a’C_ 34 X év_
dt 4,000/ dt’

If dC/dt = 600 when x = 12,000, then dx/di = 100.
The production is increasing at a rate of 100 tons per
day.

Let x, y be distances travelled by 4 and B from their
positions at 1:00 pm in ¢ hours.

d.
Thus 2= = 16 km/h, 5)7' =20 km/h,
Let s be the distance between A and B at time f.
Thus s2 = x2 4 (25 + y)?

ds dx
28— = 2X —
S T
At 1:30 (¢ = 1) we have x =8, y = 10,

s = /82 F 352 = /1289 so

d
\/128925- =8 x 16435 x 20 = 828

dy
2(2 —
+ (5+y)d’

ds 828
and — = ———— = 23.06. At 1:30, the ships are
dt /128 P

9
separating at about 23.06 km/h.

A 16 km/h

pos. of A at 1:00 p.m. .

X

bpos. of B at 1:00 p.m.

120 km/h

Fig. 4.1.22

Let 8 and  be the angles that the minute hand and hour
hand made with the vertical ¢ minutes after 3 o’clock.
Then

do T .

P §6rad/mm .
dw T .

= = 3% rad/min,

111
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