Identifying and classifying equilibria

How many critical points does

\[x' = \sin x \]

have in \([-4\pi, 4\pi]\)? Mark them as stable or unstable.
Identifying and classifying equilibria

How many critical points does

\[x' = \sin x \]

have in \([-4\pi, 4\pi]\)? Mark them as stable or unstable.

A. 5 critical points, 2 stable.
B. 8 critical points, 3 stable.
C. 8 critical points, 4 stable.
D. 9 critical points, 4 stable.
E. 9 critical points, 5 stable.
Identifying and classifying equilibria

How many critical points does

\[x' = \sin x \]

have in \([-4\pi, 4\pi]\)? Mark them as stable or unstable.

A. 5 critical points, 2 stable.
B. 8 critical points, 3 stable.
C. 8 critical points, 4 stable.
D. 9 critical points, 4 stable.
E. 9 critical points, 5 stable.

How would you classify the equilibrium solution of the equation

\[y' = (1 - y)^2 \]?
Solving a first-order ODE

The equation $y' - 1 = xy^2 + x + y^2$

A. is linear.

B. is autonomous.

C. is separable.

D. does not have a unique solution for a given initial condition.
Solving a first-order ODE

The equation $y' - 1 = xy^2 + x + y^2$

A. is linear.
B. is autonomous.
C. is separable.
D. does not have a unique solution for a given initial condition.

Find the general solution of this equation.
Chemical reactions

A second order chemical reaction involves the interaction (collision) of one molecule of a substance P with one molecule of a substance Q to produce one molecule of a new substance X. Let p and q denote the initial concentrations of P and Q respectively, and let $x(t)$ denote the concentration of X at time t. The rate at which X is produced is proportional to the product of amount of P and Q remaining in the system. Write down the differential equation governing the system.
Chemical reactions

A second order chemical reaction involves the interaction (collision) of one molecule of a substance P with one molecule of a substance Q to produce one molecule of a new substance X. Let p and q denote the initial concentrations of P and Q respectively, and let $x(t)$ denote the concentration of X at time t. The rate at which X is produced is proportional to the product of amount of P and Q remaining in the system. Write down the differential equation governing the system.

If $x(0) = 0$, find the limiting value of $x(t)$ as $t \to \infty$ without solving the differential equation.
Chemical reactions

A second order chemical reaction involves the interaction (collision) of one molecule of a substance \(P \) with one molecule of a substance \(Q \) to produce one molecule of a new substance \(X \). Let \(p \) and \(q \) denote the initial concentrations of \(P \) and \(Q \) respectively, and let \(x(t) \) denote the concentration of \(X \) at time \(t \). The rate at which \(X \) is produced is proportional to the product of amount of \(P \) and \(Q \) remaining in the system. Write down the differential equation governing the system.

If \(x(0) = 0 \), find the limiting value of \(x(t) \) as \(t \to \infty \) without solving the differential equation.

(a) \(p \)
(b) \(q \)
(c) \(\max(p, q) \)
(d) \(\min(p, q) \)
(e) \(\frac{p + q}{2} \)