QUESTION 1

(a) Solve ODE for K & F(t)

Set up differential equation

\[2x'' + Kx = F \]

Find

\[x'' = -9c_1\cos(3t) - 9c_2\sin(3t) = e^t \]

Plug into differential equation

\[(K - 18)[c_1\cos(3t) + c_2\sin(3t)] + (2 + K)e^t = F(t) \]

From equation of motion for undamped systems we know:

\[\omega = \sqrt{\frac{K}{m}} \]

\[3 = \sqrt{\frac{K}{2}} \]

Therefore,

\[K = 18 \]

Plug K=18 in the above Differential equation to get:

\[F = 20e^t \]

(b) Find \(\mathcal{L}[\cos^2(\omega t)] \)

Trigonometric Identity

\[\cos^2(\omega t) = \frac{1}{2} + \frac{\cos(2\omega t)}{2} \]

Then

\[\mathcal{L}[\cos^2(\omega t)] = \mathcal{L}\left[\frac{1}{2}\right] + \mathcal{L}\left[\frac{\cos(2\omega t)}{2}\right] \]
Using the laplace transform tables we get
\[\mathcal{L}[\cos^2(\omega t)] = \frac{1}{2s} + \frac{s}{2s^2 + 8\omega^2} \]

QUESTION 2

(i) Find solution to the homogenous equation

\[t^2 y'' - 2y = 0 \]

Guess:

\[y(t) = t^r \]

\[y'(t) = rt^{r-1} \]

\[y''(t) = r(r-1)t^{r-2} \]

Plug values of \(y(t) \) and \(y''(t) \) into the above equation:

\[t^r(r^2 - r - 2) = 0 \]

Solve for \(r \):

\[r_1 = -1, r_2 = 2 \]

Therefore, the solution to the homogenous equation is:

\[y(t) = c_1 \frac{1}{t} + c_2 t^2 \]

(ii) Use variation of parameters to find a particular solution that solves

\[y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2} \]

Assume

\[y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t) \]
where
\[y_1(t) = t^2, \quad y_2(t) = \frac{1}{t} \]

Find the wronskian:
\[
W(t) = \begin{vmatrix}
 t^2 & \frac{1}{t} \\
 2t & \frac{1}{t^2}
\end{vmatrix}
\]

\[W(t) = -3 \]

Find \(u_1(t) \) & \(u_2(t) \) using the equation:
\[
u_1(t) = -\int \frac{y_2(t)g(t)}{W(t)} \, dt
\]
\[
u_2(t) = \int \frac{y_1(t)g(t)}{W(t)} \, dt
\]

where \(W(t) = -3 \) & \(g(t) = 3 - \frac{1}{t^2} \)

After plugging in the values for \(W(t) \) and \(g(t) \) then integrating, we get:
\[
u_1(t) = \ln(t) + \frac{1}{6t^2}
\]
\[
u_2(t) = -\frac{t^3}{3} + \frac{t}{3}
\]

Using the assumed form of:
\[
y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)
\]

we find that:
\[
y_p(t) = t^2\ln(t) - \frac{t^2}{3} + \frac{1}{2}
\]

Combining the homogenous and particular solution, we get
\[
y(t) = c_1 \frac{1}{t} + c_2 t^2 + t^2\ln(t) + \frac{1}{2}
\]