Math 321 Midterm 2 Solutions

1. (a) When is a function \(\alpha : [a, b] \to \mathbb{R} \) said to be of bounded variation?

Solution. A function \(\alpha : [a, b] \to \mathbb{R} \) is said to be of bounded variation if its total variation \(V^b_a \alpha \) is finite. The total variation is defined to be

\[
V^b_a \alpha = \sup_P \sum_{i=1}^{n} |\alpha(x_i) - \alpha(x_{i-1})|,
\]

where the supremum is taken over all partitions \(P = \{a = x_0 < x_1 < \cdots < x_n = b\} \) of \([a, b]\).

(b) Determine whether the function \(\alpha : [0, 1] \to \mathbb{R} \) given by

\[
\alpha(x) = \begin{cases}
\log(1 + x) \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\
0 & \text{if } x = 0,
\end{cases}
\]

is of bounded variation.

Solution. The given function \(\alpha \) is not of bounded variation. To see this, let us choose, for every large integer \(N \), a partition \(P_N \) of \([0, 1]\) of the form

\[
P_N = \{1 = t_0 > t_1 > t_2 > \cdots t_{2N} > t_{2N+1} = 0\}, \text{ where } t_k = \frac{2}{k\pi}, 1 \leq k \leq 2N.
\]

Since \(\sin(1/t_k) \) vanishes for even \(k \) and equals \(\pm 1 \) for odd \(k \), one of the terms in any pair \((\alpha(t_k), \alpha(t_{k+1}))\) must vanish. This means that

\[
|\alpha(t_k) - \alpha(t_{k+1})| = \log(1 + s_k) \text{ where } s_k = \begin{cases}
t_k & \text{if } k \text{ is odd}, \\
t_k^{-1} & \text{if } k \text{ is even}.
\end{cases}
\]

In other words,

\[
(1) \quad \sum_{k=1}^{N} |\alpha(t_k) - \alpha(t_{k-1})| \geq \sum_{k=1}^{N} \log(1 + t_{2k-1}) = \sum_{k=1}^{N} \log \left(1 + \frac{2}{\pi(2k-1)}\right).
\]

We know that \(\log(1 + x) \to 1 \) as \(x \to 0 \).

Therefore by limit comparison test, the last series in (1) is comparable to the partial sum \(\sum_{k=1}^{N} 1/k \) of the harmonic series, which diverges to \(\infty \) as \(N \to \infty \).

(c) A linear functional \(L : C[0, 1] \to \mathbb{R} \) obeys the following property: for every continuously differentiable \(g : [0, 1] \to \mathbb{R} \),

\[
L(g) = - \int_{0}^{1} g'(x) \cos(\pi x) \, dx.
\]

Does there exist \(\alpha \in BV[0, 1] \) such that

\[
L(f) = \int_{0}^{1} f(x) d\alpha(x), \text{ for every } f \in C[0, 1].
\]

If yes, find such a function \(\alpha \). If not, explain why not. Clearly state any result you need to use.
Solution. Integrating by parts, we find that for every continuously differentiable function \(g \),
\[
L(g) = -\cos(\pi x)g(x) \bigg|_{x=0}^{x=1} + \int_0^1 (-\pi) \sin(\pi x)g(x) \, dx
\]
\[
= g(1) + g(0) - \pi \int_0^1 g(x) \sin(\pi x) \, dx.
\]
The last expression is linear in \(g \), is meaningful for every continuous function \(g \) (not merely continuously differentiable), and is bounded above in absolute value by a constant multiple of \(||g||_\infty \). Thus by the Riesz representation theorem, \(L \) is given by a Riemann-Stieltjes integral with respect to an integrator \(\alpha \in BV[0,1] \). In this case, one possible choice of \(\alpha \) is the following:

\[
\alpha(x) = -\pi \sin(\pi x) + \begin{cases}
0 & \text{if } x = 0, \\
1 & \text{if } 0 < x < 1, \\
2 & \text{if } x = 1.
\end{cases}
\]

2. For each of the following statements, determine whether it is true or false. The answer should be in the form of a short proof or an example, as appropriate.

(a) There exists a bounded function on \([a,b]\) that fails to be Riemann-Stieltjes integrable with respect to every nondecreasing non-constant integrator \(\alpha \).

Proof. True. The function
\[
f(x) = \begin{cases}
1 & \text{if } x \in \mathbb{Q}, \\
0 & \text{if } x \notin \mathbb{Q}
\end{cases}
\]
is such a function. For any nondecreasing \(\alpha \) such that \(\alpha(a) < \alpha(b) \), and any partition \(P \) of \([a,b]\),
\[
L_\alpha(P,f) = 0, \quad U_\alpha(P,f) = \alpha(b) - \alpha(a).
\]
Hence Riemann’s condition fails. \(\square \)

(b) The class \(C[a,b] \) consists of all functions that are Riemann-Stieltjes integrable on \([a,b]\) with respect to every nondecreasing integrator \(\alpha \).

Proof. True. Let \(\mathcal{R}_\alpha[a,b] \) denote the class of functions that are Riemann-Stieltjes integrable with respect to the integrator \(\alpha \). Using Riemann’s condition, we have shown in class that \(C[a,b] \subseteq \mathcal{R}_\alpha[a,b] \) for every nondecreasing \(\alpha \). Conversely, suppose \(f \) is discontinuous at a point \(x_0 \in [a,b] \). This means that
\[
\sup \{|f(x) - f(y)| : x, y \in (x_0 - \delta, x_0 + \delta)\} \to \epsilon_0 > 0 \text{ as } \delta \to 0 + .
\]
Let \(\alpha \) be a nondecreasing step function with a unit jump only at the point \(x_0 \), with the same-sided discontinuity as \(f \). Then for any sufficiently fine partition \(P \) with \(x_0 \) as a partition point, we have
\[
U_\alpha(P,f) - L_\alpha(P,f) \geq \epsilon_0,
\]
which violates Riemann’s condition. \(\square \)
(c) The Fourier series of a continuous 2π-periodic function f converges to f in the L^1 norm $\| \cdot \|_1$. Recall

$$\|f\|_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx.$$

Proof. True. By the Cauchy-Schwarz inequality, $\|g\|_1 \leq \|g\|_2$ for any Riemann-integrable function g. Let $S_N f$ denote the Nth partial Fourier sum of f. Since we know that $\|S_N f - f\|_2 \to 0$ by Plancherel’s theorem, it follows from the inequality above that $\|S_N f - f\|_1 \to 0$ as $N \to \infty$. □

(d) For any bounded, Riemann integrable function f, the sequence of Fourier coefficients $\{\hat{f}(k) : k \geq 0\}$ converges to zero.

Proof. True. Since a bounded Riemann-integrable function is square-integrable, we know by Plancherel’s theorem that

$$\sum_{k \in \mathbb{Z}} |\hat{f}(k)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, dx < \infty$$

Thus the left hand side is a summable series, and hence the kth summand goes to zero as $k \to \infty$. □

(e) Let f be a bounded Riemann integrable function on $[-\pi, \pi]$. Then $\|\sigma_N f - f\|_1 \to 0$ as $N \to \infty$. Here $\sigma_N f$ denotes the Nth partial Cesaro sum of f.

Solution. Fix $\epsilon > 0$. By HW 7 Problem 4(a) we know that there exists a continuous 2π-periodic function g such that $\|f - g\|_2 < \epsilon$. By Fejer’s theorem, we know that $\|\sigma_N g - g\|_\infty \to 0$ as $N \to \infty$. Combining these steps together and using the triangle inequality, we find that

$$\|\sigma_N f - f\|_1 \leq \|\sigma_N (f - g)\|_1 + \|f - g\|_1 + \|\sigma_N g - g\|_1$$

$$\leq 2\|f - g\|_1 + \|\sigma_N g - g\|_\infty$$

$$\leq 2\epsilon + \|\sigma_N g - g\|_\infty \to 2\epsilon \text{ as } N \to \infty.$$

The estimate $\|\sigma_N (f - g)\|_1 \leq \|f - g\|_1$ used in the second step follows from the fact that for any function h,

$$\|\sigma_N h\|_1 = \|K_N \ast h\|_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(x-y)h(y) \, dy \, dx$$

$$\leq \|K_N\|_1 \|h\|_1 = \|h\|_1,$$

where K_N denotes the Fejer kernel. □

3. Let $\alpha, \beta > 0$. Evaluate the sum

$$S = \sum_{m \in \mathbb{Z}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x^{2\alpha} y^{2\beta} \cos(m(x+y)) \, dy \, dx.$$
Solution. We observe that the functions \(f_\alpha(x) = x^{2\alpha} \), \(f_\beta(x) = x^{2\beta} \) are even, and hence their Fourier series do not contain any terms involving sines. Combining this fact with the trig identity \(\cos(a + b) = \cos a \cos b - \sin a \sin b \), we find that

\[
S = \sum_{m \in \mathbb{Z}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x^{2\alpha} y^{2\beta} \cos(mx) \cos(my) \, dy \, dx
= 4\pi^2 \sum_{m \in \mathbb{Z}} \hat{f}_\alpha(m) \hat{f}_\beta(m) = 4\pi^2 \langle \hat{f}_\alpha, \hat{f}_\beta \rangle_{\ell^2}
= 4\pi^2 \langle f_\alpha, f_\beta \rangle_{L^2} = 2\pi \int_{-\pi}^{\pi} f_\alpha(x) f_\beta(x) \, dx = \frac{4\pi^2(\alpha+\beta+1)}{2(\alpha+\beta+1)}.
\]

The fourth inequality is a consequence of the fact that inner product is preserved under the Fourier transform. \(\square \)

4. (Extra credit) Define the frequency support of a function \(f \) to be

\[
\text{supp}(\hat{f}) := \left\{ n \in \mathbb{Z} : \hat{f}(n) \neq 0 \right\},
\]

where \(\hat{f}(n) \) denotes the \(n \)-th Fourier coefficient. Let \(\mathcal{F} \) denote the class of all continuous functions whose frequency support is contained in \([-10,10]\). Given any “gap” sequence \(\{d_k : k \geq 1\} \subseteq \mathbb{N} \), find a continuous function \(g \) with the following frequency-replicating feature: for every \(f \in \mathcal{F} \),

\[
\text{supp}(\hat{fg}) = \bigcup_{k=1}^{\infty} A_k, \text{ with }
A_k := \{a_k + n : n \in \text{supp}(\hat{f})\} \text{ for some integer } a_k, \text{ and }
dist(A_k, A_{k'}) \geq d_k + \cdots + d_{k'-1} \text{ for all } k < k'.
\]

Solution. For a sequence \(\{a_k\} \) specified by

\[
\begin{align*}
a_1 &= 0, \quad a_2 = 20 + d_1, \quad a_3 = 40 + d_1 + d_2, \cdots, \\
a_k &= 20 + a_{k-1} + d_{k-1} = 20(k-1) + d_1 + \cdots d_{k-1},
\end{align*}
\]

set

\[
g(t) = \sum_{k=1}^{\infty} \frac{e^{ia_k t}}{k^2}.
\]

By the Weierstrass \(M \)-test, \(g \) is a continuous function. By construction, \(\text{supp}(\hat{g}) = \{a_k : k \geq 1\} \). We will now show that \(g \) has the required properties.

Since every \(f \in \mathcal{F} \) is a trigonometric polynomial, it matches its Fourier series:

\[
f(x) = \sum_{m \in \mathbb{Z} \cap [-10,10]} \hat{f}(m) e^{imx}.
\]

Substituting this into the integral expression for \(\hat{fg} \) we find that

\[
\hat{fg}(n) = 2\pi \sum_{m \in \mathbb{Z}} \hat{f}(m) \hat{g}(n-m).
\]
For this last expression to be nonzero, there must exist $m \in \text{supp}(\hat{f})$ such that $n - m \in \text{supp}(\hat{g}) = \{a_k : k \geq 1\}$. This means that $n = (n - m) + m \in a_k + \text{supp}(\hat{f}) = A_k$ for some k, as desired. Finally we verify that for $k < k'$,

$$
\text{dist}(A_k, A_{k'}) \geq \text{dist}(a_k + [-10, 10], a_{k'} + [-10, 10]) \\
\geq (a_{k'} - 10) - (a_k + 10) \\
= a_{k'} - a_k - 20 = 20(k' - k - 1) + d_k + \cdots + d_{k'-1} \\
\geq d_k + \cdots + d_{k'-1}.
$$

\square