1. Let $Y = L^1(\mu)$ where μ is the counting measure on \mathbb{N}, and let $X = \{f \in Y : \sum_{n=1}^{\infty} n|f(n)| < \infty\}$, equipped with L^1-norm.

(a) X is a proper dense subspace of Y; hence X is not complete.

Proof.
- It is direct to check that X is a subspace of Y.
- $X \nsubseteq Y$, since $f(n) := n^{-2} \in Y$ but not in X.
- X is dense in Y. Too see this, let $x \in Y$ and $\varepsilon > 0$. Then there is N such that $\sum_{n=N}^{\infty} |f(n)| < \varepsilon$. But the truncated sequence $g(n) := f(n)1_{(n<N)}$ clearly lies in X and satisfies $\sum_{n=1}^{\infty} |f(n) - g(n)| < \varepsilon$.

(b) Define $T : X \to Y$ by $Tf(n) = nf(n)$. Then T is closed but not bounded.

Proof.
- By definition, T is a closed linear operator (not a closed map!!), if $f_m \to f$ in X and $Tf_m \to g$ in Y implies that $g = Tf$. In our case, we are to show

$$g(n) = nf(n) \quad \forall n \in \mathbb{N},$$

given that

$$\lim_{m \to \infty} \sum_{n=1}^{\infty} |f_m(n) - f(n)| = 0, \quad (1)$$

$$\lim_{m \to \infty} \sum_{n=1}^{\infty} |nf_m(n) - g(n)| = 0, \quad (2)$$

In particular, for any $n \in \mathbb{N}$, (1) implies that $\lim_{m \to \infty} f_m(n) = f(n)$, and (2) implies that $\lim_{m \to \infty} nf_m(n) = g(n)$. Combining these two gives $g(n) = nf(n)$, as desired.

Comment. Many of you proved the statement that T is a topologically closed map. It is an exercise to show that this is stronger than T being a closed linear operator.
Consider $f_m(n) := e_m$ for $m \in \mathbb{N}$, where \(\{e_m\}_{m=1}^\infty \) is the canonical basis for $L^1(\mu)$. Then $\|Tf_m\|_1 = m$, so

$$
\sup_{f \in X, \|f\|_1 = 1} \frac{\|Tf_m\|_1}{\|f_m\|_1} \geq \frac{m}{1} = m.
$$

Since m can arbitrarily large, T is unbounded.

(c) Let $S = T^{-1}$. Then $S : Y \to X$ is bounded and surjective but not open.

Proof.
- Clearly, S is well defined by $Sf(n) = f(n)/n$. It is bounded since

$$
\|Sf\|_1 = \sum_{n=1}^{\infty} \frac{|f(n)|}{n} \leq \sum_{n=1}^{\infty} |f(n)| = \|f\|_1.
$$

- S is surjective, since given any $f \in X$, we have $Tf \in Y$ and $S(Tf) = f$ by definition.
- S is open if and only if $S^{-1} = T$ is continuous if and only if T is bounded since T is linear. But T is unbounded, so S is not open.

2. Let $Y = C[0,1]$ and $X = C^1[0,1]$, both equipped with the uniform norm.

(a) X is not complete.

Proof. By the Weierstrass approximation theorem, the space of all polynomials P is dense in Y under the sup-norm. Since $P \subseteq X$, that means X is also dense in Y. If X is complete, then $X = Y$, which is absurd. Thus X cannot be complete.

(b) The map $(d/dx) : X \to Y$ is closed but not bounded.

Proof.
- To show the map is closed, let $f_n \to f$ in X, $f'_n \to g$ in Y, and our goal is to show that $g = f'$. This is proved in Problem 3(b) of Homework 1.
- The map is not bounded, as can be seen from the examples $x^n \mapsto nx^{n-1}$, $n \in \mathbb{N}$.

3. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on the vector space X such that $\|\cdot\|_1 \leq \|\cdot\|_2$. If X is complete with respect to both norms, then the norms are equivalent.

Proof. Define $I : (X, \|\cdot\|_2) \to (X, \|\cdot\|_1)$ to be the identity map. This maps is clearly linear and surjective, and $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ are both complete by assumption. Moreover, $\|I\|_{op} \leq 1$. By the open mapping theorem, I is open, which means that $I^{-1} : (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ is continuous, and hence bounded. Thus there is C with $\|\cdot\|_2 \leq C\|\cdot\|_1$, so the norms are equivalent.
4. There is no slowest rate of decay of the terms of an absolutely convergence series; that is, there is no sequence \(\{a_n\} \) of positive numbers such that \(\sum a_n |c_n| < \infty \) if and only if \(\{c_n\} \) is bounded.

Proof. Suppose there is such sequence \(\{a_n\} \). Define \(T : B(\mathbb{N}) \rightarrow L^1(\mu) \) by \(Tf(n) = a_n f(n) \), where \(B(\mathbb{N}) \) is the space of all bounded sequences endowed with the sup-norm. The assumption is to say that \(T \) is well defined and invertible, with \(T^{-1} f(n) = a_n^{-1} f(n) \).

The mapping \(T \) is bounded, which we now show. By definition of \(\{a_n\} \), if we take \(c_n = e := (1, 1, 1, \ldots) \in B(\mathbb{N}) \), then we get \(\sum a_n < \infty \). Thus

\[
\|Tf\|_1 = \sum_{n=1}^{\infty} a_n |f(n)| \leq \|f\|_\infty \sum_{n=1}^{\infty} a_n,
\]

so \(T \) is bounded. By the open mapping theorem, \(T \) is open. Therefore \(T \) is a homeomorphism between the spaces \(B(\mathbb{N}) \) and \(L^1(\mu) \).

Consider \(S \), the set of \(f \) such that \(f(n) = 0 \) for all but finitely many \(n \). \(S \) is dense in \(L^1 \), which is proved in Q1 (a). But \(S \) is not dense in \(B(\mathbb{N}) \). For, consider \(e \in B(\mathbb{N}) \). If \(h \in S \) is any finite sequence, then \(\|g - h\|_\infty \geq 1 \).

But \(T \) is a homeomorphism between \(B(\mathbb{N}) \) and \(L^1(\mu) \), and \(S \) is dense in \(L^1(\mu) \), so \(T^{-1}(S) \) is dense in \(B(\mathbb{N}) \). But \(T^{-1}(S) \subseteq S \), so \(S \) is dense in \(B(\mathbb{N}) \), which is a contradiction. Therefore, such positive sequence \(\{a_n\} \) does not exist. \(\square \)

5. Let \(X \) and \(Y \) be Banach spaces. If \(T : X \rightarrow Y \) is a linear map such that \(f \circ T \in X^* \) for every \(f \in Y^* \), then \(T \) is bounded.

Proof. Since \(X \) and \(Y \) are Banach spaces, to show that \(T \) is bounded, it is equivalent to showing that \(T \) is a closed linear operator.

Let \(x_n \rightarrow x \) in \(X \) and \(Tx_n \rightarrow y \) in \(Y \). To show that \(Tx = y \), we claim that it is equivalent to showing that \(f(Tx) = f(y) \) for all \(f \in Y^* \), which is exactly our assumption. Indeed, by linearity, if \(Tx - y \neq 0 \), then by a corollary of the Hahn-Banach theorem (Q4 of Homework 2), there is \(f \in Y^* \) such that \(f(Tx - y) = 1 \), which is a contradiction. Hence \(Tx = y \) and \(T \) is closed. \(\square \)

6. Let \(X \) and \(Y \) be Banach spaces, and let \(T_n \) be a sequence in \(L(X,Y) \) such that \(\lim_n T_n x \) exists for every \(x \in X \). Let \(Tx = \lim_n T_n x \); then \(T \in L(X,Y) \).

Proof. Let \(x \in X \). Since \(Tx = \lim_n T_n x \) exists, in particular, \(\{T_n x\} \) is bounded in \(n \). Since \(X \) is a Banach space, the uniform boundedness principle implies that \(\sup_n \|T_n\|_{op} \leq M < \infty \). Thus

\[
\|Tx\| = \lim_{n \rightarrow \infty} \|T_n x\| \leq \sup_n \|T_n\|_{op} \|x\| \leq M \|x\|.
\]

Since \(T \) is obviously linear, \(T \in L(X,Y) \). \(\square \)
7. Let X and Y be Banach spaces and $\{T_{jk} : j, k \in \mathbb{N}\} \subseteq L(X, Y)$. Suppose that for each k there exists $x \in X$ such that $\sup\{\|T_{jk}x\| : j \in \mathbb{N}\} = \infty$. Then there is an x such that $\sup\{\|T_{jk}x\| : j \in \mathbb{N}\} = \infty$ for all k.

Proof. We prove it by contradiction. Suppose there is no such x. Then for all x, there is k_x such that the sequence $\sup\{\|T_{jk}x\| : j \in \mathbb{N}\} < \infty$. Thus we can write

$$X = \bigcup_{k=1}^{\infty} \{ x : \sup_j \|T_{jk}x\| < \infty \} := \bigcup_{k=1}^{\infty} E_k.$$

Denote $E_{k,n} := \{ x : \sup_j \|T_{jk}x\| \leq n \}$, and hence $X = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} E_{k,n}$.

- Each $E_{k,n}$ is closed: given $x_m \subseteq E_{k,n}$ with $x_m \to x$, then for all j we have

$$\|T_{jk}x\| = \lim_m \|T_{jk}x_m\| \leq n,$$

since T_{jk} is continuous and $x_m \in E_{k,n}$. Hence $x \in E_{k,n}$.

- Each $E_{k,n}$ is nowhere dense. To see this, note first it is easy to check that E_k is a subspace of X; moreover, $E_k \subseteq X$ by the assumption that there is $x \in X$ such that $\sup\{\|T_{jk}x\| : j \in \mathbb{N}\} = \infty$. Hence E_k is a proper subspace of X, so E_k is nowhere dense. As a subset of E_k, $E_{k,n}$ is also nowhere dense.

Since X is a Banach space, we have reached a contradiction to the Baire category theorem. Hence our assumption is false, that is, there is an x such that $\sup\{\|T_{jk}x\| : j \in \mathbb{N}\} = \infty$ for all k. \qed