Introduction to Harmonic Analysis - Math 541
Spring 2016

• Instructor: Malabika Pramanik
• Office: Mathematics Building, Room 214
• Phone: (604)822-2855
• Email: malabika@math.ubc.ca
• Office hours: To be announced.

• Web page: The course website is
 http://www.math.ubc.ca/~malabika/teaching/ubc/spring16/math541/index.html
Homework assignments and all relevant course information (such as changes to office hours if any, or solutions to homework problems if needed) will be posted here.

• Text: There are no required textbooks. The following textbooks are recommended.
 – Classical and Modern Fourier Analysis, by L. Grafakos.

• Course outline: The core topics of the course are the following:
 1. Basic material concerning Fourier series, Fourier transform and Fourier inversion
 – Fourier basis for $L^2(\mathbb{T})$
 – Convolution
 – Approximate identities
 – Temperate distributions
 – Some applications
 2. Convergence of Fourier series
 – Decay of Fourier coefficients
 – Uniform convergence of Fourier series
– Pointwise convergence and almost everywhere divergence
– Norm convergence

3. Interpolation of operators
– Complex methods (Riesz-Thörin theorem, analytic interpolation)
– Real methods (Marcinkiewicz interpolation theorem)
– Applications (Hausdorff-Young inequality, Young’s convolution inequality, fractional integration, Hardy-Littlewood maximal theorem).

4. Singular integral operators
– Calderón-Zygmund kernels
– Some multiplier operators
– The Calderón-Zygmund decomposition
– L^p boundedness of Calderón-Zygmund singular integral operators
– Homogeneous distributions, Hilbert transform, Riesz transform.

5. Littlewood-Paley theory
– Almost orthogonality in Hilbert spaces, Cotlar-Knapp-Stein lemma
– A square function that characterizes L^p
– Variations and applications

Time permitting, we will also consider other special topics.

• Lectures: Monday, Wednesday, Friday 11 am - 12 noon in Mathematics Annex 1118.

• Grading Policy: Homework problems will be posted regularly on the course website. In addition, you will be required to give a presentation in class on a topic relevant to the course material and agreed upon by yourself and the instructor. Your total score will be a weighted average of your homework and in-class presentation, with the breakdown as follows.

 Homework 75%
 Presentation 25%