1. Given a nonconstant non-decreasing function $\alpha : [a, b] \to \mathbb{R}$, let $\mathcal{R}_\alpha[a, b]$ denote the collection of all bounded functions on $[a, b]$ which are Riemann-Stieltjes integrable with respect to α. Is $\mathcal{R}_\alpha[a, b]$ a vector space, a lattice, an algebra?

Solution. They are all a vector space, a lattice, an algebra. (See also Theorem 6.12-6.13 in the textbook.) To show that $f, g \in \mathcal{R}_\alpha[a, b]$ implies $f + g, cf, |f| \in \mathcal{R}_\alpha[a, b]$, we use (verify it!)

$$U_\alpha(f + g, P) - L_\alpha(f + g, P) = (U_\alpha(f, P) - L_\alpha(f, P)) + (U_\alpha(g, P) - L_\alpha(g, P))$$

$$U_\alpha(cf, P) - L_\alpha(cf, P) = cU_\alpha(f, P) - cL_\alpha(g, P)$$

$$U_\alpha(|f|, P) - L_\alpha(|f|, P) \leq U_\alpha(f, P) - L_\alpha(g, P)$$

To show that $fg \in \mathcal{R}_\alpha[a, b]$. First we prove in the special case that f, g are non-negative then general case follows by decomposing $f = f^+ - f^-, g = g^+ - g^-$ and we know that $f^+, f^-, g^+, g^- \in \mathcal{R}_\alpha[a, b]$ since it is a lattice.

Now assume that f, g are non-negative, we use

$$|U_\alpha(fg, P) - L_\alpha(fg, P)| \leq |U_\alpha(f, P)U_\alpha(g, P) - L_\alpha(f, P)L_\alpha(g, P)|$$

$$\leq |U_\alpha(f, P)||U_\alpha(g, P) - L_\alpha(g, P)| + |L_\alpha(g, P)||U_\alpha(f, P) - L_\alpha(f, P)|$$

Here $|U_\alpha(f, P)|, |L_\alpha(g, P)|$ are bounded by an absolute constant.

2. This problem focuses on computing the Riemann-Stieltjes integral for specific choices of integrators.

(a) Let $x_0 = a < x_1 < x_2 < \cdots < x_n = b$ be a fixed collection of points in $[a, b]$, and let α be an increasing step function on $[a, b]$ that is constant on each of the open intervals (x_{i-1}, x_i) and has jumps of size $\alpha_i = \alpha(x_i+) - \alpha(x_i-)$ at each of the points x_i. For $i = 0$ and n, we make the obvious adjustments

$$\alpha_0 = \alpha(a+) - \alpha(a-), \quad \alpha_n = \alpha(b) - \alpha(b-).$$

If $f \in B[a, b]$ is continuous at each of the points x_i, show that $f \in \mathcal{R}_\alpha[a, b]$ and

$$\int_a^b f \, d\alpha = \sum_{i=0}^n f(x_i)\alpha_i.$$

Solution. Intuitively, the point x_i will contribute the value of the integral if α jumps at x_i which α_i measures how large does α jump. . Given $\epsilon > 0$, for each x_i there is a δ_i such that $|x - x_i| < \delta \implies |f(x) - f(x_i)| < \epsilon$. Choose $\delta = \min\{\delta_1, \ldots, \delta_n\}$ then $|f(x) - f(x_i)| < \epsilon$. (or one can argue that f is uniformly continuous). Also assume $\delta < \frac{1}{2}\min_{1 \leq i \leq n} |x_i - x_{i+1}|$.

Refine the partition P as follows:

- For each $x_0, x_1, \ldots, x_{n-1}$ choose a point $y_i \in (x_i, x_{i+1})$.
- For each x_1, x_2, \ldots, x_n choose a point $z_i \in (x_i - \delta, x_i)$. Then we have a new partition P^*

$$\{x_0, y_0, z_1, x_1, y_1, z_2, x_2, y_2, \ldots, z_{n-1}, x_{n-1}, y_{n-1}, z_n, x_n\}$$
Now using definition of δ and the fact that α is constant along (x_i, x_{i+1})

$$L_\alpha(f, P^*) \geq \sum_{i=1}^{n} (f(x_i) - \epsilon)\alpha_i$$

$$U_\alpha(f, P^*) < \sum_{i=1}^{n} (f(x_i) + \epsilon)\alpha_i$$

We have

$$\sum_{i=1}^{n} (f(x_i) - \epsilon)\alpha_i < L_\alpha(f, P^*) \leq \int_{a}^{b} f \, d\alpha < U_\alpha(f, P^*) < \sum_{i=1}^{n} (f(x_i) + \epsilon)\alpha_i$$

Since $\epsilon > 0$ is arbitrary (small), let $\epsilon \to 0$, we are done.

(b) If f is continuous on $[1, n]$, compute $\int_{1}^{n} f(x)d[x]$, where $[x]$ is the greatest integer in x.

What is the value of $\int_{1}^{t} f(x)d[x]$ if t is not an integer?

Solution. Apply part a) with $x_0 = 1, x_1 = 2, \ldots, x_{n-1} = n$ since $\alpha_0 = 0, \alpha_1 = \alpha_2 = \cdots = \alpha_{n-1} = 1$, we have

$$\int_{1}^{n} f[x] = \sum_{i=0}^{n-1} f(n)\alpha_i = \sum_{k=2}^{n} f(k)$$

i.e. on $[1, N], [x]$ jumps at $2, 3, \ldots, N$. In the same way,

$$\int_{1}^{t} f[d[x] = \sum_{k=2}^{[t]} f(k)$$

In we want the sum from 1 to n we could take e.g.

$$\int_{1}^{t} f[d[x] = \sum_{k=1}^{[t]} f(k)$$

where 0.99 could be replaced by any numbers in $[0, 1)$. \[\square \]

3. Determine, with adequate justification, whether each of the following statements is true or false.

(a) An equicontinuous, pointwise bounded subset of $C[a, b]$ is compact.

Solution. The statement is easily seen to be false; the class of constant functions $\{\frac{1}{n} : n \geq 1\}$ provides a counterexample. The collection is equicontinuous but not closed (the constant function zero is a limit point outside the set), hence not compact.

Remark: Note however that an equicontinuous, pointwise bounded and closed subset of $C(X)$ is in fact compact. Just follow the proof of the Arzela-Ascoli theorem. \[\square \]

(b) The function $\chi_\mathbb{Q}$ is Riemann integrable on $[0, 1]$.

Solution. The function $\chi_\mathbb{Q}$ is not Riemann integrable on $[0, 1]$ or on any interval $[a, b]$ for that matter. Since \mathbb{Q} is dense in \mathbb{R}, it follows that $U(\chi_\mathbb{Q}, P) = 1$ and $L(\chi_\mathbb{Q}) = 0$ for any partition P of $[a, b]$. By Riemann’s condition on integrability, $\chi_\mathbb{Q}$ fails to be integrable. \[\square \]
(c) The function \(\chi_\Delta \) is Riemann integrable on \([0, 1] \), where \(\Delta \) denotes the Cantor middle-third set. (We have already run into this set in Homework 2, Problem 5).

Solution. The statement is true. We will again use Riemann’s condition for integrability. Let us recall from construction of the Cantor set that \(\Delta = \cap_{n=1}^\infty \Delta_n \), where \(\Delta_n \) is the set obtained at the \(n \)th stage of the construction. In particular, \(\Delta_n \) is the union of \(2^n \) chosen intervals each of length \(3^{-n} \). Let \(P_n \) denote the partition on \([0, 1]\) generated by the intervals chosen at the \(n \)th step of the iteration. Then
\[
M_i = 1, m_i = 0 \text{ if } I = [x_{i-1}, x_i] \text{ is a chosen interval,}
M_i = m_i = 0 \text{ if } I \text{ is not chosen.}
\]
This implies that
\[
U(\chi_\Delta, P_n) - L(\chi_\Delta, P_n) = \sum_i (M_i - m_i) \Delta x_i = (1)(2^n)(3^{-n}) = \left(\frac{2}{3}\right)^n \to 0 \text{ as } n \to \infty.
\]
\(\square \)

(d) \(\bigcap_\alpha \{R_\alpha[a, b] : \alpha \text{ increasing} \} = C[a, b] \).

Solution. The statement is true. We have already seen in class that \(C[a, b] \subseteq R_\alpha[a, b] \) for any increasing \(\alpha \). Conversely, suppose that \(f \in R_\alpha[a, b] \) for every increasing \(\alpha \). We aim to show that \(f \) is continuous on \([a, b] \) and argue by contradiction. Assume if possible that \(f \) is discontinuous at the point \(c \) (say from the right without loss of generality), and define \(\alpha \) to be the increasing function \(\chi_{(c,b)} \). Let \(P = \{a = x_0 < x_1 < \cdots < x_n = b\} \) denote any partition of \([a, b] \) in which \(x_{i-1} = c \) for some \(i \). (Without loss of generality one can always ensure this after passing to a refinement - why?)
\[
U(f, P) - L(f, P) \geq (M_i - m_i) \Delta x_i = |f(c^+) - f(c)| > 0.
\]
Thus Riemann’s condition does not hold. \(\square \)

(e) If \(f \) is a monotone function and \(\alpha \) is both continuous and non-decreasing, then \(f \in R_\alpha[a, b] \).

Solution. The statement is true. Let us fix \(\epsilon > 0 \) and aim to find a partition \(P \) of \([a, b] \) for which \(U_\alpha(f, P) - L_\alpha(f, P) < \epsilon \). Since \(\alpha \) is continuous on \([a, b] \), it is uniformly continuous; hence there exists \(\delta > 0 \) such that \(\alpha(x) - \alpha(y) < \epsilon \) for all \(a \leq y < x \leq b, 0 < x - y < \delta \). Choosing \(P = \{a = x_0 < x_1 < x_2 < \cdots < x_n = b\} \) to be a partition of \([a, b] \) into subintervals of length < \(\delta \), and recalling that \(f \) is monotone, we find that
\[
U(f, P) - L(f, P) = \sum_{i=0}^n |f(x_i) - f(x_{i-1})| \Delta x_i < \epsilon \sum_{i=0}^n |f(x_i) - f(x_{i-1})| = \epsilon |f(b) - f(a)|,
\]
where the last step uses the monotonicity of \(f \). Riemann’s condition on integrability proves the statement. \(\square \)

(f) There exists a non-decreasing function \(\alpha : [a, b] \to \mathbb{R} \) and a function \(f \in R_\alpha[a, b] \) such that \(f \) and \(\alpha \) share a common-sided discontinuity.
Solution. The statement is false. If a nondecreasing \(\alpha : [a,b] \to \mathbb{R} \) and a function \(f : [a,b] \to \mathbb{R} \) share a common-sided discontinuity, then \(f \notin R_\alpha[a,b] \).

Suppose that \(c \) is a point of common-sided discontinuity, say from the right. Choose a partition \(P \) of \([a,b]\) in which \(c \) is one of the partitioning points. Then

\[
U(f, P) - L(f, P) \geq |f(c+) - f(c)||\alpha(c+) - \alpha(c)|,
\]

which violates Riemann’s condition for integrability.

\(\square\)

(g) If \(f \in R_\alpha[a,b] \) with \(m \leq f \leq M \) and if \(\varphi \) is continuous on \([m,M]\), then \(\varphi \circ f \in R_\alpha[a,b] \).

Solution. The statement is true.

Fix \(\epsilon > 0 \). Since \(\varphi \) is uniformly continuous on \([m,M]\), let us choose \(\delta > 0 \) such that

\[
|\varphi(u) - \varphi(v)| < \frac{\epsilon}{2(\alpha(b) - \alpha(a))}
\]

whenever \(|u - v| < \delta \). Since \(f \) is assumed to be Riemann-Stieltjes integrable on \([a,b]\), we know from Riemann’s condition that there exists a partition \(P = \{a = x_0 < x_1 < \cdots < x_n = b\} \) of \([a,b]\) such that

\[
U_\alpha(f, P) - L_\alpha(f, P) = \sum_{i=0}^{n} (M_i - m_i) \Delta \alpha_i < \frac{\delta \epsilon}{4||\varphi \circ f||_\infty},
\]

\[
M_i(f) = \sup_{x \in I_i} f(x), \ m_i(f) = \inf_{x \in I_i} f(x), \ I_i = [x_{i-1}, x_i].
\]

We will decompose the set of indices \(i \in \{0,1, \cdots, n-1\} \) into two disjoint subsets \(\mathcal{A} \) and \(\mathcal{B} \): \(i \in \mathcal{A} \) if \(M_i - m_i \leq \delta \) and \(i \in \mathcal{B} \) otherwise. Then it follows from (1) above that

\[
\delta \sum_{i \in \mathcal{B}} \Delta \alpha_i \leq \sum_{i \in \mathcal{B}} (M_i - m_i) \Delta \alpha_i \leq \frac{\delta \epsilon}{4||\varphi \circ f||_\infty}, \quad \text{i.e.,} \quad \sum_{i \in \mathcal{B}} \Delta \alpha_i < \frac{\epsilon}{4||\varphi \circ f||_\infty}.
\]

Now, for the same partition \(P \) as above we can estimate

\[
U_\alpha(\varphi \circ f, P) - L_\alpha(\varphi \circ f, P)
= \left[\sum_{i \in \mathcal{A}} + \sum_{i \in \mathcal{B}} \right] (M_i(\varphi \circ f) - m_i(\varphi \circ f)) \Delta \alpha_i
\leq \frac{\epsilon}{2(\alpha(b) - \alpha(a))} \sum_{i \in \mathcal{B}} \Delta \alpha_i + 2||\varphi \circ f||_\infty \sum_{i \in \mathcal{B}} \Delta \alpha_i
\leq \frac{\epsilon}{2(\alpha(b) - \alpha(a))} (\alpha(b) - \alpha(a)) + 2||\varphi \circ f||_\infty \frac{\epsilon}{4||\varphi \circ f||_\infty}
\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,
\]

verifying Riemann’s condition. \(\square\)