Midterm Exam II
November 5, 2014

No books. No notes. No calculators. No electronic devices of any kind.

Name ___________________ Student Number ___________________

Problem 1. (3 points)
Find all values of i^i.

\[
 i^i = e^{\log(i^i)} = e^{i \log(i)} = e^{\frac{\ln |i|}{2} + i \cdot \arg(i)}
\]

\[
 = e^{i(\pi + \cdot \arg(i))} = e^{-\arg(i)} = e^{-\frac{\pi}{2} + 2\pi k}, k \in \mathbb{Z}
\]

Surprise: all values of i^i are positive real!
Problem 2. (3 points)
Carefully sketch the branch cut(s) of the principal branch of the multi-valued function

\[f(z) = \sqrt[3]{z^3 - 27}. \]

(The principal branch is defined in terms of the principal branch of the logarithm.)

\[f'(z) = \left(\frac{z^3 - 27}{2}\right)^{\frac{1}{3}} = e^{\frac{1}{3} \log(z^3 - 27)} \]

So the branch cuts of \(f(z) \) are where \(z^3 - 27 = -r \quad (r > 0 \text{ real}) \).

Or \(z^3 = 27 - r \)

For \(r = 0 \) : \(z^3 = 27 \) so \(z = 3e^{2\pi i k/3} \quad k = 0, 1, 2 \)

For \(r = 27 \) : \(z^3 = 0 \) so \(z = 0 \)

For \(r = 54 \) : \(z^3 = -27 \) so \(z = 3e^{2\pi i/3} + 2\pi i k/3 \quad k = 0, 1, 2 \)

etc.
Problem 3. (5 points)
True or false? (No reasons necessary.)
(a) Every branch of the multi-valued function \(f(z) = i^z \) is an entire function.
(b) The principal branch of the function \(f(z) = z^i \) is analytic at \(z = i \).
(c) The function \(f(z) = \sinh(z) \) is periodic, with period \(2\pi i \).
(d) Let \(\Gamma \) be a circle centered at the origin, traversed once in the counterclockwise direction. Then, for every complex number \(z \) not on \(\Gamma \), we have
\[
\oint_{\Gamma} \frac{w}{w-z} \, dw = \begin{cases}
2\pi i & \text{if } z \text{ is inside } \Gamma, \\
0 & \text{if } z \text{ is outside } \Gamma.
\end{cases}
\]
(e) For every closed contour \(\Gamma \), which avoids the origin, we have
\[
\oint_{\Gamma} \frac{1+z^{10}}{z^{100}} \, dz = 0.
\]
(a) \(f(z) = i^z = e^{z \log(i)} \). For every value of \(\log(i) \), for example \(\log(i) = \frac{i\pi}{2} \),
this gives an entire function, for example \(e^{z i \pi/2} \).
Another value of \(\log(i) \) is \(\frac{5i\pi}{4} \), this gives \(i^z = e^{z \cdot 5i\pi/4} \) another entire function. **TRUE.**
(b) \(f(z) = e^{i \log(z)} \). Principal branch is \(f(z) = e^{i \log(z)} \).
\(\log(z) \) is analytic at \(z = i \) hence \(f(z) \) is, too. **TRUE.**
(c) \(f(z) = \sinh(z) = \frac{1}{2}(e^z - e^{-z}) \).
\(f(z+2\pi i) = \sinh(z+2\pi i) = \frac{1}{2}(e^{z+2\pi i} - e^{-(z+2\pi i)}) = \frac{1}{2}(e^z - e^{-z}) = \sinh(z) = f(z) \).
TRUE.
(d) Cauchy's Integral Formula for \(f(z) = \pi \) gives \(z = f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(w)}{w-z} \, dw \)
for \(z \) inside \(\Gamma \). If \(z \) is outside \(\Gamma \) the function \(\frac{w}{w-z} \)
has no pole in a domain containing \(\Gamma \) so \(\oint_{\Gamma} \frac{w}{w-z} \, dw = 0 \). **TRUE.**
(e) \(\frac{1+z^{10}}{z^{100}} = \frac{z^{-100} + z^{-90}}{z^{100}} \) has an antiderivative, for example \(-\frac{1}{99} z^{-99} - \frac{1}{89} z^{-89} \).
So the integral over every closed contour vanishes. **TRUE.**
Problem 4. (4 points)
Compute the contour integral
\[\int_{\Gamma} z \, dz, \]
where \(\Gamma \) is the circle of radius 2, centered at \(z = i \), traversed once in the clockwise direction. Simplify your answer.

Parameterize the circle:
\[z(t) = i + 2e^{-2\pi it}, \quad 0 \leq t \leq 1. \]

\[
\int_{\Gamma} z \, dz = \int_{0}^{1} \left(i + 2e^{-2\pi it} \right) \left(i + 2e^{-2\pi it} \right) dt
\]

\[
= \int_{0}^{1} \left(-i + 2e^{2\pi it} \right) \left(-4\pi i e^{2\pi it} \right) dt
\]

\[
= -4\pi i \int_{0}^{1} e^{-2\pi it} dt - 8\pi i \int_{0}^{1} dt
\]

\[
= -4\pi i \left[-\frac{1}{2\pi i} e^{-2\pi it} \right]_{0}^{1} - 8\pi i \left[t \right]_{0}^{1}
\]

\[
= \frac{4\pi i}{2\pi i} (1 - 1) - 8\pi i (1 - 0)
\]

\[= -8\pi i \]
Problem 5. (5 points)
Compute the contour integral
\[\int_{i}^{-i} \frac{z}{(z+1)^2} dz, \]
along the straight path from \(i \) to \(-i\). Simplify your answer.

\[f(z) = \frac{z}{(z+1)^2} = \frac{A}{(z+1)^2} + \frac{B}{z+1} \]

\[A = \lim_{z \to -1} f(z)(z+1)^2 = \lim_{z \to -1} z = -1 \]

\[B = \lim_{z \to -1} \frac{d}{dz}f(z)(z+1)^2 = \lim_{z \to -1} 1 = 1 \]

Check: \(\frac{-1}{(z+1)^2} + \frac{1}{z+1} = \frac{-1 + z + 1}{(z+1)^2} = \frac{z}{(z+1)^2} = f(z) \) \(\checkmark \)

antiderivative of \(\frac{-1}{(z+1)^2} = -(z+1)^{-2} \) is \((z+1)^{-1} = \frac{1}{z+1} \)

antiderivative of \(\frac{1}{z+1} \) is \(\log(z+1) \). The branch cut of \(\log(z+1) \) is where \(z+1 = -r \) \((r > 0 \text{ real}) \) \(\Rightarrow \) \(z = -1 - r \) \(\Rightarrow \) \(z \leq -1 \) real.

Since the path avoids the branch cut, we can use \(\log(z+1) \) as antiderivative of \(\frac{1}{z+1} \).

\[
\begin{align*}
\int_{i}^{-i} \frac{z}{(z+1)^2} dz &= \int_{i}^{-1} \frac{-1}{(z+1)^2} dz + \int_{-1}^{i} \frac{1}{z+1} dz \\
&= \frac{1}{-i+1} - \frac{1}{i+1} + \log(-i+1) - \log(i+1) \\
&= \frac{(1+i) - (1-i)}{(1+i)(1-i)} + \log|1-i| + i \arg(1-i) - (\log|1+i| + i \arg(1+i)) \\
&= \ldots
\end{align*}
\]
Overflow space.

\[\ldots = \frac{2 \pi}{2} + \ln r^2 + i \left(-\frac{\pi}{4} \right) - \left(\ln r^2 + i \frac{\pi}{4} \right) \]

\[= i - \frac{\pi}{4} i - \frac{\pi}{4} i \]

\[= \left(1 - \frac{\pi}{2} \right) i \]
Problem 6. (5 points)
Compute the contour integral

\[\oint_{\Gamma} \frac{z^3}{(z-1)^3} \, dz, \]

where \(\Gamma \) is a simple closed curve winding around \(z = 1 \) once in the clockwise direction. Simplify your answer.

By the residue theorem for rational functions,

\[\oint_{\Gamma} \frac{z^3}{(z-1)^3} \, dz = -2\pi i \quad \text{res} \left(\frac{z^3}{(z-1)^3}; 1 \right) \]

\[\text{clockwise} \]

\[= -2\pi i \quad \lim_{z \to 1} \frac{d}{dz} \left(\frac{z^3}{(z-1)^3} \right) \]

\[= -2\pi i \quad \lim_{z \to 1} \frac{6z}{(z-1)^3} \]

\[= -6\pi i \]

Alternatively, use

\[f''(z) = \frac{z^3}{2\pi i} \oint_{\Gamma} \frac{f(w)}{(w-z)^3} \, dw \]

with \(f(w) = w^3 \) and \(z = 1 \):

\[f''(1) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{w^3}{(w-1)^3} \, dw \]

\[f'(w) = 3w^2 \]

\[f''(w) = 6w \]

\[f''(1) = 6 \]

but the path goes the wrong way, so

\[\oint_{\Gamma} \frac{z^3}{(z-1)^3} \, dz = -6\pi i \]