1. (a) \[z = i \log(-1 + i) = i \left[\log \sqrt{2} + i \left(\frac{3\pi}{4} + 2n\pi \right) \right], \] so \[\cos z = \frac{e^{iz} + e^{-iz}}{2} = -\frac{3}{4} + \frac{i}{4}. \]

(b) \[z = \frac{\sqrt{3}+i}{\sqrt{2}(1+i)} = \frac{(\sqrt{3}+i)(\sqrt{2}-i)}{2\sqrt{2}}. \] Since \(|z| = 1 \) and \(z \) lies in the fourth quadrant, \(\text{Log}(z) = -i \arctan \left(\frac{\sqrt{3}-1}{\sqrt{3}+1} \right) = -i \arctan(2 - \sqrt{3}) \), where \(\arctan \) denotes the inverse tangent function with range in \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \).

(c) \[\cosh z = \frac{(e^z + e^{-z})}{2}, \] so \(\cosh z = \frac{1}{2} \) implies that \(e^z + e^{-z} = 1 \) or \(e^z = \frac{1+i\sqrt{3}}{2} \). Therefore the solutions are of the form \(z = \log \left(\frac{1+i\sqrt{3}}{2} \right) = \pm \left(\frac{\pi}{3} + 2n\pi \right) \) where \(n \) is any integer.

2. (a) Since \(f \) has continuous first partial derivatives at all points, it is differentiable at all points where Cauchy-Riemann equations hold. Since \(u_x = 1, u_y = 2, v_x = 4(2x - y) \) and \(v_y = -2(2x - y) \), we find that the CR-equations hold if and only if \(2x - y = -\frac{1}{2} \). Thus \(f \) is differentiable only at the points lying on this line.

(b) Since the line does not contain any open set, \(f \) is analytic nowhere.

(c) Suppose that \(g = u + iw \) is an entire function. By CR equations, \(w_x = -u_y = -2 \) and \(w_y = u_x = 1 \). Therefore, \(w = y - 2x + C \) where \(C \) is any constant. Hence \(g = (1-2i)z+C \) for any arbitrary constant \(C \).

3. The domain of \(f \) indicates that a branch could be defined as follows:

\[f(z) = \exp \left[-\frac{1}{2} \mathcal{L}_{-\frac{\pi}{2}}(z-1) \right] \]

where \(\mathcal{L}_{-\frac{\pi}{2}} \) denotes the branch of the complex logarithm with the cut along the nonpositive imaginary axis. In other words, \(\mathcal{L}_{-\frac{\pi}{2}}(z) = \ln |z| + i \arg(z) \), with \(\arg(z) \in (-\frac{\pi}{2}, \frac{3\pi}{2}) \).

Parametrize \(\Gamma \) as \(z(t) = e^{it}, 0 \leq t \leq \pi \). Therefore \(\mathcal{L}_{-\frac{\pi}{2}}(z(t)) = it \), hence

\[\int_{\Gamma} f(z) \, dz = \int_{0}^{\pi} e^{-\frac{it}{2}} i e^{it} \, dt = i \int_{0}^{\pi} e^{\frac{it}{2}} \, dt = 2(i - 1). \]

4. Use the residue theorem to evaluate all the integrals in this problem.

(a) \(2\pi i \)

(b) \(-\pi i \)

(c) \(200\pi i e^{-i} \)

(d) \(-\frac{\pi^2i}{4} \).

5. For any \(K > R \), let \(C_K \) denote the circle centred at \(z_0 = 0 \) with radius \(K \). We make use the inequality for derivatives of analytic functions: for any \(r \geq 1 \),

\[|f^{(n+r)}(0)| \leq (n+r)! \frac{M_K}{K^{n+r}}, \]

where \(M_K = \sup_{z \in C_K} |f(z)| \). By the hypothesis of this problem, \(M_K \leq CK^n \). Therefore for every \(K > R \), we obtain the estimate

\[|f^{(n+r)}(0)| \leq (n+r)! \frac{CK^n}{K^{n+r}} = \frac{(n+1)!C}{K^r} \to 0 \text{ as } K \to \infty. \]
Thus $f^{(n+r)}(0) = 0$ for all $r \geq 1$. Now it follows from the Taylor expansion of f that

$$f(z) = \sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!}(z - z_0)^j,$$

in other words, f is a polynomial of degree at most n.

6. By partial fraction expansion, we find that

$$(1) \quad \frac{1}{(3z - 1)(z + 2)} = \frac{3}{7(3z - 1)} - \frac{1}{7(z + 2)}. $$

(a) For large $|z|$, both of the following inequalities $|1/3z| < 1$ and $|2/z| < 1$. We therefore arrange the expressions above so that the geometric series expansion can be used:

$$\frac{3}{7(3z - 1)} = \frac{1}{7z(1 - \frac{1}{3z})} = \frac{1}{7z} \sum_{k=0}^{\infty} \left(\frac{1}{3z}\right)^k$$

$$\frac{1}{7(z + 2)} = \frac{1}{7z(1 + \frac{2}{z})} = \frac{1}{7z} \sum_{k=0}^{\infty} \left(\frac{2}{z}\right)^k.$$

Therefore for large $|z|$, $f(z) = \frac{1}{7z} \sum_{k=0}^{\infty} \left(3^{-k} - 2^k\right) z^{-k}$.

(b) Here the annular region must be of the form $\{z : r < |z| < R\}$ where $\frac{1}{3} < r < 1 < R < 2$. Thus now $|1/3z| < 1$ and $|z|/2 < 1$, so the second term in (1) has to be arranged differently for the geometric series formula to be applied.

$$\frac{1}{7(z + 2)} = \frac{1}{14(1 + \frac{z}{2})} = \frac{1}{14} \sum_{k=0}^{\infty} \left(-\frac{z}{2}\right)^k.$$

In this region the Laurent series takes the form

$$f(z) = \frac{1}{7z} \sum_{k=0}^{\infty} \left(\frac{1}{3z}\right)^k - \frac{1}{14} \sum_{k=0}^{\infty} \left(-\frac{z}{2}\right)^k.$$

(c) The function f has two simple poles, at $z = \frac{1}{3}$ and $z = -2$ respectively, with $\text{Res}_f(\frac{1}{3}) = \frac{1}{7}$ and $\text{Res}_f(-2) = -\frac{1}{7}$.

(d) $\int_{C} f(z) \, dz = 2\pi i \text{Res}_f(\frac{1}{3}) - 2\pi i \text{Res}_f(-2) = \frac{4\pi i}{7}$.
7. Expanding $e^{1/z}$ and $1/(1 - z)$ in their Taylor expansions we find that

$$e^{\frac{1}{z}} = \sum_{k=0}^{\infty} \frac{1}{k!z^k} = 1 + \frac{1}{1!z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

$$\frac{1}{1 - z} = \sum_{k=0}^{\infty} z^k = 1 + z + z^2 + z^3 + \cdots,$$

so

$$\text{Res}(e^{\frac{1}{z}} \frac{1}{1 - z}) = \text{coefficient of } \frac{1}{z} \text{ in the product of the two Laurent series}$$

$$= \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

$$= e - 1.$$