1. Show that a subset of a metric space is compact if and only if it is complete and totally bounded.

2. Let X be a compact metric space and let $\{f_n : n \geq 1\}$ be an equicontinuous sequence in $C(X)$. If $\{f_n\}$ is pointwise convergent, prove that in fact $\{f_n : n \geq 1\}$ is uniformly convergent. (In other words, pointwise convergence + equicontinuity \implies uniform convergence).

3. Recall the vector space $C^1[a, b]$ of all functions $f : [a, b] \to \mathbb{R}$ having a continuous first derivative on $[a, b]$. The space $C^1[a, b]$ is complete under the norm

$$||f||_{C^1} = \max_{a \leq x \leq b} |f(x)| + \max_{a \leq x \leq b} |f'(x)|.$$

(You should check this but need not submit a proof of it). Show that a bounded subset of $C^1[a, b]$ is equicontinuous.

4. Let $K(x, t)$ be a continuous function on the square $[a, b] \times [a, b]$.
 (a) Show that the mapping T defined by

 $$Tf(x) = \int_a^b f(t)K(x, t) \, dt$$

 maps $C[a, b]$ to $C[a, b]$, and in fact maps bounded sets to equicontinuous sets. Use this to conclude that T is continuous.
 (b) Let $\{f_n : n \geq 1\}$ be a sequence in $C[a, b]$ with $||f_n||_{\infty} \leq 1$ for all n. Define

 $$F_n(x) = \int_a^x f_n(t) \, dt.$$

 Show that some subsequence of $\{F_n : n \geq 1\}$ is uniformly convergent.