1. Does the sequence of functions
 \[f_n(x) = nx e^{-nx} \]
 converge pointwise on \([0, \infty)\)? Is the convergence uniform on this interval? If yes, give reasons. If not, determine the intervals (if any) on which the convergence is uniform.

2. Let \(\{f_n : n \geq 1\} \) and \(\{g_n : n \geq 1\} \) be real-valued functions on a set \(X \), and suppose that both sequences converge uniformly on \(X \). Show that the sequence \(\{f_n + g_n : n \geq 1\} \) converges uniformly on \(X \). Give an example showing that \(\{f_ng_n : n \geq 1\} \) need not converge uniformly on \(X \).

3. Fix \(a, b \in \mathbb{R}, a < b \). Let \(f_n : [a, b] \to \mathbb{R} \) satisfy \(|f_n(x)| \leq 1 \) for all \(x \) and \(n \). Show that there is a subsequence \(\{f_{n_k}\} \) such that \(\lim_{k \to \infty} f_{n_k}(x) \) exists for each rational \(x \in [a, b] \).