1. (a) Evaluate \(\lim_{(x,y) \to (1,-1)} \frac{\sin(x^2+y)}{x^2+y} \) or show that it doesn’t exist.
(b) Consider the area function \(A(x) = \int_1^x f(t)dt \), with \(A(2) = 6 \) and \(A(3) = 5 \).
Compute \(\int_3^2 f(t)dt \).
(c) A self-employed software engineer estimates that her annual income over the next 10 years will steadily increase according to the formula \(70,000e^{0.11t} \), where \(t \) is the time in years. She decides to save 10% of her income in an account paying 6% annual interest, compounded continuously. Treating the savings as a continuous income stream over a 10-year period, find the present value.
(d) Draw the level curves of the graph of \(f(x,y) = 2x^2 + y^2 \) at the heights 0, 1, 2.
(e) Evaluate \(\int_0^1 \frac{\cos(\sqrt{x})}{\sqrt{x}} dx \).
(f) Let \(f(x,y) = \frac{x+y}{x-y} \). Use linear approximation to estimate \(f(2.95, 2.05) \).

2. Evaluate \(\int \frac{x+2}{x(x^2-1)} dx \).

3. Find the area of the region in the first quadrant bounded by \(y = \frac{1}{x} \), \(y = 4x \), and \(y = \frac{1}{2}x \).

4. Find \(k \) such that \(f(x) = \frac{k}{(x+1)^3} \) is a probability density function on the interval \([0, \infty)\), for some random variable \(X \). Then compute the probability that \(1 \leq X \leq 4 \).

5. Mothballs tend to evaporate at a rate proportional to their surface area. If \(V \) is the volume of a mothball, then its surface area is roughly \(V^{2/3} \). Suppose that the mothball’s volume \(V(t) \) (as a function of times \(t \) in weeks) decreases at a rate that is twice its surface area, and that it initially has a volume of 27 cubic centimeters. Construct and solve an initial value problem for the volume \(V(t) \). Then determine if and when the mothball vanishes.

6. Consider the surface \(z = f(x,y) = 1 + \frac{1}{\sqrt{xy}} \). At the point on the surface above the point \((x,y) = (4,1) \), what is the direction of steepest descent? Describe this direction with a unit vector in the \(xy \)-plane.

7. By employing \(x \) semi-skilled workers and \(y \) skilled workers, a factory can assemble \(\sqrt{4xy + y^2} \) custom-built computers per hour. The factory pays each semi-skilled worker $8 per hour, and each skilled worker $20 per hour. Determine the maximum number of computers the factory can assemble in an hour for a total labour cost of $720.

8. Find and classify the critical points of \(f(x,y) = 7x^2 - 5xy + y^2 + x - y + 6 \).

9. Given the supply and demand curves
\[p = D(q) = 8 - q, \quad p = S(q) = \sqrt{q + 1} + 3, \]
find the equilibrium point and the consumer/producer surplus.