Math 121 Assignment 9
Due Friday April 9

■ Practice problems:
• Try out as many problems from Sections 9.5–9.6 as you can, with special attention to the ones marked as challenging problems. As a test of your understanding of the material, work out the problems given in the chapter review. You may skip the ones that require computer aid.

■ Problems to turn in:
1. Find the centre, radius and interval of convergence of each of the following power series.
 \[(a) \sum_{n=0}^{\infty} \frac{1 + 5^n}{n!} x^n \quad (b) \sum_{n=1}^{\infty} \frac{(4x - 1)^n}{n^n}.\]
2. Expand
 (a) \(1/x^2\) in powers of \(x + 2\).
 (b) \(x^3/(1 - 2x^2)\) in powers of \(x\).
 (c) \(e^{2x+3}\) in powers of \(x + 1\).
 (d) \(\sin x - \cos x\) about \(\frac{\pi}{4}\).
 For each expansion above, determine the interval on which the representation is valid.
3. Find the sums of the following numerical series.
 \[(a) \sum_{n=0}^{\infty} \frac{(n+1)^2}{\pi^n} \quad (b) \sum_{n=1}^{\infty} \frac{(-1)^n n(n+1)}{2^n} \quad (c) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^n},\]
 \[(d) x^3 - \frac{x^9}{3! \times 4} + \frac{x^{15}}{5! \times 16} - \frac{x^{21}}{7! \times 64} + \frac{x^{27}}{9! \times 256} - \cdots\]
 \[(e) 1 + \frac{x^2}{3!} + \frac{x^4}{5!} + \frac{x^6}{7!} + \frac{x^8}{9!} + \cdots\]
 \[(f) 1 + \frac{1}{2 \times 2!} + \frac{1}{4 \times 3!} + \frac{1}{8 \times 4!} + \cdots\]
4. This problem outlines a strategy for verifying whether a function \(f\) is real-analytic. Recall the \(n\)th order Taylor polynomial of \(f\) centred at \(c\):
 \[P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k,\]
 and set \(E_n = f(x) - P_n(x)\).
(a) Use mathematical induction to show that

\[E_n(x) = \frac{1}{n!} \int_c^x (x - t)^n f^{(n+1)}(t) \, dt, \]

provided \(f^{(n+1)} \) exists on an interval containing \(c \) and \(x \). The formula above is known as Taylor’s formula with integral remainder.

(b) Use Taylor’s formula with integral remainder to prove that \(\ln(1+x) \) is real analytic at \(x = 0 \); more precisely, that the Maclaurin series of \(\ln(1+x) \) converges to \(\ln(1+x) \) for \(-1 < x \leq 1\).