11. \[\int_0^1 \frac{dx}{\sqrt{x(1-x)}} = 2 \int_0^{1/2} \frac{dx}{\sqrt{\frac{1}{4} - (x - \frac{1}{2})^2}} \]

\[= 2 \lim_{c \to 0^+} \int_c^{1/2} \frac{dx}{\sqrt{\frac{1}{4} - (x - \frac{1}{2})^2}} \]

\[= 2 \lim_{c \to 0^+} \sin^{-1}(2x - 1) \bigg|_{c}^{1/2} = \pi. \]

The integral converges.
14. \[\int_0^{\pi/2} \sec x \, dx = \lim_{C \to (\pi/2)^-} \ln |\sec x + \tan x| \bigg|_0^C \]
\[= \lim_{C \to (\pi/2)^-} \ln |\sec C + \tan C| = \infty. \]

This integral diverges to infinity.
38. Since $0 \leq 1 - \cos \sqrt{x} = 2 \sin^2 \left(\frac{\sqrt{x}}{2} \right) \leq 2 \left(\frac{\sqrt{x}}{2} \right)^2 = \frac{x}{2}$, for $x \geq 0$, therefore

$$\int_0^{\pi^2} \frac{dx}{1 - \cos \sqrt{x}} \geq 2 \int_0^{\pi^2} \frac{dx}{x},$$

which diverges to infinity.
Since $\sin x \geq \frac{2x}{\pi}$ on $[0, \pi/2]$, we have

$$
\int_0^\infty \frac{|\sin x|}{x^2} \, dx \geq \int_0^{\pi/2} \frac{\sin x}{x^2} \, dx \\
\geq \frac{2}{\pi} \int_0^{\pi/2} \frac{dx}{x} = \infty.
$$

The given integral diverges to infinity.

Fig. 5-37
40. Since \(\ln x \) grows more slowly than any positive power of \(x \), therefore we have \(\ln x \leq kx^{1/4} \) for some constant \(k \) and every \(x \geq 2 \). Thus, \(\frac{1}{\sqrt[4]{x \ln x}} \geq \frac{1}{kx^{3/4}} \) for \(x \geq 2 \) and \(\int_2^\infty \frac{dx}{\sqrt[4]{x \ln x}} \) diverges to infinity by comparison with \(\frac{1}{k} \int_2^\infty \frac{dx}{x^{3/4}} \).
4. \[\int_{1}^{\infty} \frac{dx}{x^2 + \sqrt{x} + 1} \] Let \(x = \frac{1}{t^2} \)
\[dx = -\frac{2}{t^3} dt \]
\[= \int_{1}^{0} \frac{1}{\left(\frac{1}{t^2} \right)^2 + \sqrt{\frac{1}{t^2}} + 1} \left(-\frac{2}{t^3} \right) dt \]
\[= 2 \int_{0}^{1} \frac{t \, dt}{t^4 + t^3 + 1}. \]
\[\int_0^{\pi/2} \frac{dx}{\sqrt{\sin x}} \]

Let \(\sin x = u^2 \)

\[2u \, du = \cos x \, dx = \sqrt{1 - u^4} \, dx \]

\[= 2 \int_0^1 \frac{u \, du}{u \sqrt{1 - u^4}} \]

\[= 2 \int_0^1 \frac{du}{\sqrt{(1-u)(1+u)(1+y^2)}} \]

Let \(1 - u = v^2 \)

\[-du = 2v \, dv \]

\[= 4 \int_0^1 \frac{v \, dv}{v \sqrt{(1+1-v^2)(1+(1-v^2)^2)}} \]

\[= 4 \int_0^1 \frac{dv}{\sqrt{(2-v^2)(2-2v^2+v^4)}}. \]
3. One possibility: let \(x = \sin \theta \) and get

\[
I = \int_{-1}^{1} \frac{e^x}{\sqrt{1-x^2}} \, dx = \int_{-\pi/2}^{\pi/2} e^{\sin \theta} \, d\theta.
\]

Another possibility:

\[
I = \int_{-1}^{0} \frac{e^x}{\sqrt{1-x^2}} \, dx + \int_{0}^{1} \frac{e^x}{\sqrt{1-x^2}} \, dx = I_1 + I_2.
\]

In \(I_1 \) put \(1 + x = u^2 \); in \(I_2 \) put \(1 - x = u^2 \):

\[
I_1 = \int_{0}^{1} \frac{2e^{u^2-1}u}{u\sqrt{2-u^2}} \, du = 2 \int_{0}^{1} \frac{e^{u^2-1}}{\sqrt{2-u^2}} \, du
\]

\[
I_2 = \int_{0}^{1} \frac{2e^{1-u^2}u}{u\sqrt{2-u^2}} \, du = 2 \int_{0}^{1} \frac{e^{1-u^2}}{\sqrt{2-u^2}} \, du
\]

so \(I = 2 \int_{0}^{1} \frac{e^{u^2-1} + e^{1-u^2}}{\sqrt{2-u^2}} \, du \).
8. Let

\[I = \int_{1}^{\infty} e^{-x^2} \, dx \]

Let \(x = \frac{1}{t} \)

\[dx = -\frac{dt}{t^2} \]

\[= \int_{1}^{0} e^{-(1/t)^2} \left(-\frac{1}{t^2} \right) \, dt = \int_{0}^{1} \frac{e^{-1/t^2}}{t^2} \, dt. \]

Observe that

\[\lim_{t \to 0^+} \frac{e^{-1/t^2}}{t^2} = \lim_{t \to 0^+} \frac{t^{-2}}{e^{1/t^2}} \left[\frac{\infty}{\infty} \right] \]

\[= \lim_{t \to 0^+} \frac{-2t^{-3}}{e^{1/t^2}(-2t^{-3})} \]

\[= \lim_{t \to 0^+} \frac{1}{e^{1/t^2}} = 0. \]

Hence,

\[S_2 = \frac{1}{3} \left(\frac{1}{2} \right) \left[0 + 4(4e^{-4}) + e^{-1} \right] \]

\[\approx 0.1101549 \]

\[S_4 = \frac{1}{3} \left(\frac{1}{4} \right) \left[0 + 4(16e^{-16}) + 2(4e^{-4}) + 4 \left(\frac{16}{9}e^{-16/9} \right) + e^{-1} \right] \]

\[\approx 0.1430237 \]

\[S_8 = \frac{1}{3} \left(\frac{1}{8} \right) \left[0 + 4 \left(64e^{-64} + \frac{64}{9}e^{-64/9} + \frac{64}{25}e^{-64/25} + \frac{64}{49}e^{-64/49} \right) + 2 \left(16e^{-16} + 4e^{-4} + \frac{16}{9}e^{-16/9} \right) + e^{-1} \right] \]

\[\approx 0.1393877. \]

Hence, \(I \approx 0.14 \), accurate to 2 decimal places. These approximations do not converge very quickly, because the fourth derivative of \(e^{-1/t^2} \) has very large values for some values of \(t \) near 0. In fact, higher and higher derivatives behave more and more badly near 0, so higher order methods cannot be expected to work well either.
14. Let \(y = f(x) \). We are given that \(m_1 \) is the midpoint of \([x_0, x_1]\) where \(x_1 - x_0 = h \). By tangent line approximate in the subinterval \([x_0, x_1]\),

\[
f(x) \approx f(m_1) + f'(m_1)(x - m_1).
\]

The error in this approximation is

\[
E(x) = f(x) - f(m_1) - f'(m_1)(x - m_1).
\]

If \(f''(t) \) exists for all \(t \) in \([x_0, x_1]\) and \(|f''(t)| \leq K \) for some constant \(K \), then by Theorem 11 of Section 4.9,

\[
|E(x)| \leq \frac{K}{2} (x - m_1)^2.
\]

Hence,

\[
|f(x) - f(m_1) - f'(m_1)(x - m_1)| \leq \frac{K}{2} (x - m_1)^2.
\]

We integrate both sides of this inequality. Noting that \(x_1 - m_1 = m_1 - x_0 = \frac{1}{2}h \), we obtain for the left side

\[
\left| \int_{x_0}^{x_1} f(x) \, dx - \int_{x_0}^{x_1} f(m_1) \, dx - \int_{x_0}^{x_1} f'(m_1)(x - m_1) \, dx \right|
\]

\[
= \left| \int_{x_0}^{x_1} f(x) \, dx - f(m_1)h - f'(m_1) \frac{(x - m_1)^2}{2} \right|_{x_0}^{x_1}
\]

\[
= \left| \int_{x_0}^{x_1} f(x) \, dx - f(m_1)h \right|.
\]

Integrating the right-hand side, we get

\[
\int_{x_0}^{x_1} \frac{K}{2} (x - m_1)^2 \, dx = \frac{K}{2} \frac{(x - m_1)^3}{3} \Big|_{x_0}^{x_1}
\]

\[
= \frac{K}{6} \left(\frac{h^3}{8} + \frac{h^3}{8} \right) = \frac{K}{24} h^3.
\]

Hence,

\[
\left| \int_{x_0}^{x_1} f(x) \, dx - f(m_1)h \right|
\]

\[
= \left| \int_{x_0}^{x_1} [f(x) - f(m_1) - f'(m_1)(x - m_1)] \, dx \right|
\]

\[
\leq \frac{K}{24} h^3.
\]
13. \[I = \int_0^1 x^2 \, dx = \frac{1}{3}. \quad M_1 = \left(\frac{1}{2} \right)^2 (1) = \frac{1}{4}. \] The actual error is \[I - M_1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}. \]

Since the second derivative of \(x^2 \) is 2, the error estimate is

\[|I - M_1| \leq \frac{2}{24} (1 - 0)^2 (1^2) = \frac{1}{12}. \]

Thus the constant in the error estimate for the Midpoint Rule cannot be improved; no smaller constant will work for \(f(x) = x^2 \).
46. \(\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} \, dt \).

a) Since \(\lim_{t \to \infty} t^{x-1}e^{-t/2} = 0 \), there exists \(T > 0 \) such that \(t^{x-1}e^{-t/2} \leq 1 \) if \(t \geq T \). Thus
\[
0 \leq \int_T^\infty t^{x-1}e^{-t} \, dt \leq \int_T^\infty e^{-t/2} \, dt = 2e^{-T/2}
\]
and \(\int_T^\infty t^{x-1}e^{-t} \, dt \) converges by the comparison theorem.

If \(x > 0 \), then
\[
0 \leq \int_0^T t^{x-1}e^{-t} \, dt < \int_0^T t^{x-1} \, dt
\]
converges by Theorem 2(b). Thus the integral defining \(\Gamma(x) \) converges.

b) \(\Gamma(x + 1) = \int_0^\infty t^x e^{-t} \, dt \)
\[
= \lim_{c \to 0+} \int_c^R t^x e^{-t} \, dt
\]
\[
= \lim_{c \to 0+} \left(t^x \left[e^{-t} \right]_c^R + x \int_c^R t^{x-1} e^{-t} \, dt \right)
\]
\[
= 0 + x \int_0^\infty t^{x-1} e^{-t} \, dt = x\Gamma(x).
\]

c) \(\Gamma(1) = \int_0^\infty e^{-t} \, dt = 1 = 0! \).

By (b), \(\Gamma(2) = 1\Gamma(1) = 1 \times 1 = 1 = 1! \).

In general, if \(\Gamma(k+1) = k! \) for some positive integer \(k \), then
\(\Gamma(k+2) = (k+1)\Gamma(k+1) = (k+1)k! = (k+1)! \).

Hence \(\Gamma(n+1) = n! \) for all integers \(n \geq 0 \), by induction.

d) \(\Gamma\left(\frac{1}{2}\right) = \int_0^\infty t^{-1/2}e^{-t} \, dt \)

Let \(t = x^2 \)
\[
dt = 2x \, dx
\]
\[
= \int_0^\infty \frac{1}{x} e^{-x^2} 2x \, dx = 2 \int_0^\infty e^{-x^2} \, dx = \sqrt{\pi}
\]
\(\Gamma\left(\frac{3}{2}\right) = \Gamma\left(1\right) = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\pi} \).