1. Suppose \(a_n > 0 \) and \(a_{n+1}/a_n \geq n/(n+1) \) for all \(n \). Determine whether \(\sum_n a_n \) converges or diverges.

2. If \(S(x) = \int_0^x \sin(t^2) \, dt \), find \(\lim_{x \to 0} \frac{x^3 - 3S(x)}{x^7} \).

3. Find the Maclaurin polynomial of degree 4 of the function \(F(x) = \sqrt{1 + \sin x} \).

4. Which function has Maclaurin series
 \[1 - \frac{x}{2!} + \frac{x^2}{4!} - \cdots \]?

5. What is the Fourier series of the 2\(\pi \) periodic function \(h(t) = \cos^2 t \)?

6. Write down the Fourier series of the 2\(\pi \)-periodic function \(f(t) = \pi - |t|, \quad -\pi \leq t < \pi \),
 and use it to evaluate the series
 \[\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}. \]