1. Let \(\{\varphi_1, \cdots, \varphi_n\} \) be an orthonormal set in a separable Hilbert space \(\mathcal{H} \), and let \(\{\psi_1, \cdots, \psi_n\} \subseteq \text{span}\{\varphi_1, \cdots, \varphi_n\}^\perp \). For \(h \in \mathcal{H} \), define the finite rank operator \(K \) as follows,
\[
Kh = \sum_{i=1}^n \langle h, \varphi_i \rangle \psi_i.
\]
Prove that \(I + \alpha K \) is invertible for any \(\alpha \) and find its inverse.

2. (a) (The Schur test) Given a doubly infinite matrix \(A = ((\alpha_{nm})) \) and a sequence \(\{a_n\} \subset \mathbb{R}_+ \) such that
\[
\sum_{n=1}^\infty |\alpha_{nm}|a_n \leq ba_m \quad \text{for every } m
\]
\[
\sum_{m=1}^\infty |\alpha_{nm}|a_m \leq ca_n \quad \text{for every } n
\]
for suitable constants \(b \) and \(c \). Show that there is \(T \in \mathcal{B}(\mathcal{H}) \) with \(A \) as its matrix, and that \(||T||^2 \leq bc \).

(b) (The Hilbert matrix) Show that there exists \(T \in \mathcal{B}(\mathcal{H}) \) whose matrix relative to an orthonormal basis \(\{e_n : n \in \mathbb{N}\} \) is given by \(A = ((\alpha_{nm})) \), with \(\alpha_{nm} = (n + m - 1)^{-1} \). Show that \(T = T^* \) and that \(||T|| \leq \pi \).

Hint: Use the Schur test with \(a_n = (n - \frac{1}{2})^{-1/2} \).

3. Recall the multiplication operator \(M_\phi \) on \(L^2[a, b] \) that we discussed in class, \(\phi \in L^\infty[a, b] \).
(a) Can \(M_\phi \) be a compact operator for \(\phi \neq 0 \)?
(b) Describe the spaces \(\ker(M_\phi) \) and \(\text{Ran}(M_\phi) \), where \(\phi \in L^\infty[a, b] \) and \(M_\phi \) is the multiplication operator on \(L^2[a, b] \) that we discussed in class.
(c) Suppose that \(\phi \) is a polynomial. Find a necessary and sufficient condition on \(\phi \) for \(\text{Ran}(M_\phi) \) to be closed.
4. In this problem, we continue our study of the unilateral shift operators, namely the right shift \(S_r \) and the left shift \(S_l \) on \(\ell^2(\mathbb{N}) \).

(a) For \(S_r \), find \(S_r^* \).

(b) Show that \(S_r \) has no eigenvalues, but that every \(\lambda \in \mathbb{C} \) with \(|\lambda| < 1 \) is an eigenvalue for \(S_r^* \) with multiplicity 1.

(c) Show that none of the eigenvalues of \(S_r^* \) are orthogonal to each other.

(d) Prove that for \(|\mu| < 1 \), both \(I - \mu S_r \) and \(I - \mu S_l \) are invertible. What happens when \(|\mu| \geq 1 \)?

(e) For \(|\mu| > 1 \), describe \(\ker(I - \mu S_l) \) and \(\text{Ran}(I - \mu S_r)^\perp \), and find their dimensions.

5. In this problem, we explore another application of functional-analytic techniques to solving integral equations. Given \(k \in L^2([a, b] \times [a, b]) \) and \(g \in L^2[a, b] \), consider the integral equation

\[
 f(t) - \int_a^b k(t, s)f(s)ds = g(t).
\]

Here “\(= \)” means equal almost everywhere.

(a) Show that if \(||k||_{L^2} < 1 \), there exists a unique solution \(f \in L^2[a, b] \) of the above integral equation.

(b) (The earlier version of this problem was poorly worded. Sorry about the confusion.) If in addition

\[
 \sup_t \int_a^b |k(t, s)|^2ds = c < \infty,
\]

find an explicit expression for the solution \(f \) of (1) in terms of the given data \(g \). In particular, identify \(f \) as an integral operator acting on \(g \), and estimate its operator norm in terms of \(||k||_2 \) and the constant \(c \) in (2).

(c) Find an explicit solution of the integral equation

\[
 f(t) - \lambda \int_0^1 e^{\lambda(t-s)}f(s)ds = g(t) \in L^2[0, 1].
\]

6. Show that the collection of all finite-rank operators on a Hilbert space \(\mathcal{H} \) is a minimal ideal of \(\mathcal{B}(\mathcal{H}) \) (i.e., it is an ideal that does not contain any nontrivial ideals).