
Math 320 Final Exam Practice Problems

Instructions

(i) Final solutions should be well-crafted, legible and written in complete English sentences.
You will be graded both on accuracy as well as the quality of exposition.

(ii) Theorems stated in the text and proved in class do not need to be reproved. Any other
statement should be justified rigorously.

(iii) Self-contained solutions are optimal. If in doubt whether to include the proof of a statement,
ask your instructor.

1. Let S ⊂ Rn. Define

T = {x ∈ S : for every r > 0, B(x, r) ∩ S is uncountable}.

Prove that S\T is countable.

2. Let X be a set. Let F be the set of functions f : X → {0, 1}. Prove that F is either finite
or uncountable.

3. Define `∞(R) to be the set of all infinite sequences (x1, x2, . . .) of real numbers for which
sup{xi} is finite. Define an order < on `∞ as follows: If x = (x1, x2, . . .) and y = (y1, y2),
we say x < y if x1 < y1, or if x1 = y1 and x2 < y2, or if x1 = y1, x2 = y2, x3 < y3, etc.

(i) Prove that (`∞(R, <) is an ordered set.

(ii) Does (`∞(R, <) have the least upper bound property? Prove that your answer is
correct.

4. (i) Define L to be the set of functions f : [0, 1]→ R satisfying f(0) = 0, and |f(x)−f(y)| ≤
|x− y| for all x, y ∈ [0, 1]. Let {fn} be a sequence in L, and define

F (x) =

∞∑
n=1

2−nfn(x).

Prove that F ∈ L.

(ii) Define M to be the set of continuous functions g : [0, 1]→ R satisfying f(0) = 0. Let
{gn} be a sequence in M , and define

G(x) =

∞∑
n=1

2−ngn(x).

Must it be true that G ∈ M? If so, prove it. If not, provide a counter-example and
prove that your example is correct.

5. Let (R,+, ·) be the field of real numbers. Let R ∪ {p} be the set obtained by adding one
additional element to the set of real numbers. Prove that the operations + and · cannot be
extended to R ∪ {p} to make R ∪ {p} a field.

6. Prove that every open set U ⊂ Rn can be written as a countable union of open neighbor-
hoods Nr(x).



7. A set E ⊂ Rn is called a Fσ set if it can be written as a countable union of closed sets.
Give an example of a Fσ set that is neither open nor closed. Prove that your example is
correct.

8. Let f : [0, 1]→ [0, 1]× [0, 1] be continuous and one-to-one.

(a) Show that f cannot be onto.

(b) Moreover, show that the range of f is nowhere dense in [0, 1]× [0, 1].

9. Determine whether the following statement is true or false, with adequate justification: If
f : R→ R is continuous and open, it is strictly monotone. Recall that a map is open if it
maps open sets to open sets.

10. Let M be a compact metric space, and let f : M →M satisfy

d(f(x), f(y)) ≥ d(x, y) for all x, y ∈M.

Prove that

(a) f is an isometry, i.e., d(f(x), f(y)) = d(x, y) for all x, y ∈M .

(b) f is onto.

11. Let (V, || · ||V ) and (W, || · ||W ) be normed vector spaces over R, and let T : V →W a linear
map, i.e.,

T (αx+ βy) = αT (x) + βT (y) for x, y ∈ V, α, β ∈ R.

Show that the following are equivalent:

(i) T is Lipschitz.

(ii) T is uniformly continuous.

(iii) T is continuous everywhere.

(iv) T is continuous at 0 ∈ V .

(v) There is a constant C <∞ such that

||T (v)||W ≤ C||v||V for all v ∈ V.

We define the norm of T , denotes ||T || to be the smallest constant C that works in part
(v).

12. Fix y ∈ Rn and define a linear map L : Rn → R by L(x) = x · y. Show that L is continuous
and compute the norm of L.

13. Show that the definite integral

I(f) =

∫ b

a

f(t) dt

is continuous from C[a, b] into R. What is ||I||?

14. Determine whether the following statement is true or false: any two norms || · ||a and || · ||b
on a finite-dimensional vector space V are equivalent, i.e., there exist constants C1 and C2

such that
C1||x||a ≤ ||x||b ≤ C2||x||a for all x ∈ V.

15. Give an example of a vector space with two non-equivalent norms. Explain your answer.



Solutions

1. For each x ∈ S\T , there exists r > 0 so that B(x, r) ∩ S is countable. Select a rational
number rx ∈ (r/2, r) ∩Q, and a rational point yx ∈ B(x, r/2) ∩Qn.

Note that x ∈ B(yx, rx), and B(yx, rx) ⊂ B(x, r), so B(yx, rx) ∩ S is countable. Define
A = {(rx, yx) : x ∈ S} (note that there could be several distinct x ∈ S which get mapped
to the same pair (rx, yx), but A is a set, so it contains each element at most once). Since
A ⊂ Qn+1, A is countable.

Now, since x ∈ B(yx, rx), x ∈
⋃

(yx,rx)∈AB(yx, rx), so S\T ⊂
⋃

(yx,rx)∈AB(yx, rx)∩S. The

latter is a countable union of countable sets, so it is countable. We conclude that S\T is
countable.

2. If X is finite, then |F| = 2|X|, which is finite. If X is infinite, then let φ : N → X be an
injection. Let G be the set of functions g : N → {0, 1}; clearly G is uncountable, since it is
in one-to-one correspondence with the set of infinite binary strings (indeed, each function
g : N→ {0, 1} corresponds to the binary string (g(1), g(2), g(3), . . .). ). Then the map from
G to F which sends the function g : N→ {0, 1} to the function

f(x) =

{
g(φ−1(x)), x ∈ φ(N),
0, x 6∈ φ(N)

is an injection. Since G is uncountable, we conclude that F is uncountable as well.

3. (i) First, we will show that for all x, y ∈ `∞(R, precisely one of x < y, x > 0, or x = y
holds. Suppose x 6= y. Let k be the smallest index for which xk 6= yk. Since R is
ordered, we must have either xk < yk or yk < xk. If the former holds then x < y,
while if the latter holds then y < x.

Next, suppose x < y and y < z. Let k be the smallest index for which xk 6= yk, and
let ` be the smallest index for which y` 6= z`; we have xk < yk and y` < z`. If k ≤ `,
then xi = yi = zi for all i < k, and xk < yk ≤ zk, so x < z. If instead k > `, then
then xi = yi = zi for all i < `, and x` = y` < z`, so x < z. We conclude that x < z.

(ii) For each k ∈ N, define pn = (x1, x2, . . .), where xi = i for 1 ≤ i ≤ n and xi = 0 for
all i > n. We have that pn ∈ `∞(R) for each n. Define E = {pn : n ∈ N}. Then E is
bounded above (indeed, the element (2, 0, 0, . . . , ) is an upper bound for E). However,
E does not have a least upper bound. Indeed, suppose that y = (y1, y2, . . .) is the
least upper bound for E. We must have y1 ≥ 1. Let k be the smallest index so that
yk 6= k. Since y > pk+1), we must have yk > k. But it’s easy to verify that the element
(1, 2, 3, . . . , k−1, yk+k2 ) is also an upper bound for E, and this element is smaller than
y; thus y is not a least upper bound for E.

We conclude that if y = (y1, y2, . . .) is an upper bound for E, then yk = k for each
k ∈ N. But this sequence is not an element of `∞(R), since sup{yk} is not finite. We
conclude that this set E does not have a least upper bound, and thus (`∞(R), <) does
not have the least upper bound property.

4. (i) F (0) =
∑∞
n=1 2−nf(0) =

∑∞
n=1 2−n0 = 0. Next, observe that for each index n,

we have |f(x)| ≤ |x| ≤ 1 for all x ∈ [0, 1]. Thus
∑∞
n=1 |2−nf(x)| ≤

∑∞
n=1 |2−n| ≤

1, so
∑∞
n=1 fn(x) is absolutely convergent, and similarly

∑∞
n=1 fn(y) is absolutely



convergent. Thus

F (x)− F (y) =
∣∣ ∞∑
n=1

2−nfn(x)−
∞∑
n=1

2−nfn(y)
∣∣

=
∣∣ ∞∑
n=1

2−n(fn(x)− fn(y))
∣∣

≤
∞∑
n=1

2−n|fn(x)− fn(y)|

≤
∞∑
n=1

2−n|x− y|

= |x− y|,

so F ∈ L
(ii) No, it need not be true that G ∈M . For example, let gn(x) = 2nx; each function gn

is continuous and satisfies gn(0) = 0, so gn ∈ M . However,
∑∞
n=1 2−ngn(x) diverges

for x = 1, so the function G is not even well-defines on [0, 1].

5. Suppose that the operations + and · can be extended to R ∪ {p} to make R ∪ {p} a field.
Let (−p) be the additive inverse of p, i.e. p + (−p) = 0. Since 0 is the unique element x
satisfying x+ x = 0, we must have (−p) 6= p. Thus (−p) = r for some r ∈ R. This implies
−r = p, but if r ∈ R then −r ∈ R, so we have p ∈ R. This is a contradiction, since by
assumption p 6∈ R.

6. Since U ⊂ Rn is open, for each point p ∈ U there is a number rp > 0 so that Nrp(p) ⊂ U .
Write p = (p1, p2, . . . , pn). For each i = 1, . . . , n, let qi ∈ Q with |pi − qi| < rp/(100n).
Define qp = (q1, . . . , qn). We have qp ∈ Qn, and Nrp/2(qp) ⊂ Nrp(p) ⊂ U . Finally, let r′p
be a rational number with 0 < r′p < r/2. Then Nrp′ (qp) ⊂ U , and p ∈ Nrp′ (qp). This
means that U =

⋃
p∈U Nrp′ (qp). But observe that this is actually a countable union of open

neighborhoods; each open neighborhood is of the form Nt(q), where t ∈ Q and q ∈ Qn,
and Q × Qn is countable (indeed, we proved in lecture that Q is countable, and a finite
Cartesian product of countable sets is countable).

7. Let E = Q ⊂ R. E is Fσ, since Q is countable and each singleton {q} is a closed set. We
can see that E is not open, since 0 ∈ E is not an interior point; indeed, for each r > 0,
Nr(0) ∩ (R\Q) is non-empty. We can also see that E is not closed, because

√
2 6∈ E, but√

2 is a limit point of E–we proved in lecture that
√

2 is the least upper bound for the set
{x ∈ Q : x ≥ 0, x2 < 2} ⊂ E. This implies that

√
2 is a limit point of E, and thus E does

not contain all of its limit points.

8. (a) Hint: Aiming for a contradiction, let us suppose that there exists f : [0, 1] → [0, 1]×
[0, 1] that is continuous, one-to-one and onto. Then the inverse function g = f−1 :
[0, 1]× [0, 1]→ [0, 1] is well-defined and continuous (prove this). Suppose that (x0, y0)
is the unique point in [0, 1] × [0, 1] such that g(x0, y0) = 1/2. Then g maps A =
[0, 1]× [0, 1]\{(x0, y0)} bijectively onto B = [0, 1/2)∪ (1/2, 1]. However, A is connected
(why?) and B is not (why?). This contradicts the theorem that the continuous image
of any connected set is connected.

Note: The same proof suitably modified shows that there cannot exist a continuous
bijection between an interval and a rectangle.

(b) Hint: Let us denote the image of the function f by

Range(f) =
{
f(x) : x ∈M

}
.



Since Range(f) is the continuous image of a compact set, it is compact and therefore
closed. If, contrary to our desired conclusion, it is dense somewhere, that means it has
nonempty interior and must therefore contain a closed rectangle R. Define g = f−1 on
R. Argue that g(R) is an interval, and use part (a) to obtain the contradiction.

9. The statement is true. Hint: If f is not strictly monotone, first find an interval I =
(a − ε, a + ε) in R such that f is nonconstant on I, and attains its (local) maximum on I
at x = a. Show that f(I) = [f(a), b) for some b ∈ R, contradicting the assumption that f
is an open map.

10. Fact: Given x ∈M , consider the set {xn = f (n)(x)} ⊆M . Then there exists a subsequence
nk ↗∞ such that xnk

→ x.

Proof. We recall that M is compact, hence every infinite subsequence in M converges. and
after passing to a subsequence if necessary, we find that xmk

→ x0 as k →∞. Set n1 = m1,
n2 = m2 −m1, · · · , nk = mk −mk−1.

d(x, xnk
) ≤ d(xmk−1

, xmk
) ≤ d(xmk−1

, x0) + d(xmk
, x0)→∞,

as claimed.

(a) Hint: Fix x, y ∈ M . Use the fact above and its proof to find a single subsequence nk
such that xnk

→ x, ynk
→ y. Then,

d(f(x), f(y)) = d(x1, y1) ≤ d(xnk
, ynk

)→ d(x, y) as k →∞.

This shows that d(f(x), f(y)) ≤ d(x, y). Combined with the hypothesis of the problem,
this yields d(f(x), f(y)) = d(x, y).

(b) Hint: Suppose if possible that f is not onto, i.e., there exists x 6∈ f(M). Use the above
argument to show that x must be a limit point of f(M). However f(M) is compact,
hence closed, so x ∈ f(M) = f(M), a contradiction.

11. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) and (v) =⇒ (i) are left as an exercise.
We sketch the proof of (iv) =⇒ (v). Start by observing that T (0) = 0. Use the continuity
of T at 0 ∈ V to find δ > 0 such that

||T (y)|| = ||T (y)− T (0)|| ≤ 1 whenever ||y|| ≤ δ.

Now for any x ∈ V , set y = δx/||x|| and verify the desired conclusion with C = 1/δ.

12. Hint: Use Cauchy-Schwarz to show that ||L|| = ||y||.

13. Hint: Verify that ||I|| = b− a, by first showing that ||I|| ≤ b− a, and the considering the
“test function” f(x) ≡ 1.

14. The statement is true. emHint: Suppose that dim(V ) = n, and that {e1, · · · , en} is a basis
for V . Without loss of generality assume that

||x||a =

n∑
i=1

|αi| where x =

n∑
i=1

αiei.

Show that ||x||b ≤ C||x||a. Use problem 11 to deduce that the identity operator is contin-
uous from (V, || · ||a) onto (V, || · ||b). Consider the minimum value of this operator on the
compact set {||x||b = 1}.



15. Consider the space `1 of absolutely summable real sequences:

`1 = {a = (a1, a2, · · · ) :
∑
n

|an| <∞}.

The two norms
||a||1 =

∑
n

|an| and ||a||2 =
[∑
n

|an|2
] 1

2

are not equivalent. Verify that the sequence

an = (1,
1

2
, · · · , 1

n
, 0, 0, · · · )

is Cauchy with respect to || · ||2 but not with respect to || · ||1.


