Instructions

- (i) Midterm solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) Self-contained solutions are optimal. If in doubt whether to include the proof of a statement, ask your instructor.
 - 1. Let (M, d) be a metric space. For each part of this problem, identify a metric space M, a distance function d and a set $E \subseteq M$ that obeys the specified criteria, or show that no such set exists.
 - (a) A closed subset that is not compact
 - (b) A compact set that is not closed
 - (c) An infinite compact set with no limit points in M
 - (d) A connected set whose interior is disconnected
 - (e) A connected set whose closure is disconnected
 - (f) A complete set that is not compact
 - (g) A compact set that is not complete
 - 2. Let us recall that a subset D of a metric space is said to be *dense* in M if $\overline{D} = M$. A metric space (M, d) is said to be *separable* if it has a countable dense subset.
 - (a) Prove that every totally bounded metric space is separable.
 - (b) Give an example of a separable metric space that is not totally bounded.
 - 3. Consider the metric space (ℓ^1, d) , where

$$\ell^1 = \{\{x_n\} \colon \sup\{\sum_{i=1}^k |x_i| \colon k \in \mathbb{N}\} \text{ is finite}\}$$

and

$$d(\{x_n\}, \{y_n\}) = \sup\{\sum_{i=1}^k |x_i - y_i| \colon k \in \mathbb{N}\}.$$

(you can assume that d defines a metric; you do not have to prove this.)

If you prefer, you can think of ℓ^1 as the set of sequences $\{x_n\}$ with $\sum_{i=1}^{\infty} |x_i|$ finite, and $d(\{x_n\}, \{y_n\}) = \sum_{i=1}^{\infty} |x_i - y_i|$, though we haven't defined infinite sums yet, which is why the above definition was provided.

(a) Is (ℓ^1, d) compact? Prove that your answer is correct.

- (b) Let $\mathbf{0} \in \ell^1$ be the sequence of all 0s. Is $N_1(\mathbf{0})$ totally bounded? Prove that your answer is correct.
- (c) Is (ℓ^1, d) separable? Prove that your answer is correct.
- (d) Bonus: Is (ℓ^1, d) complete? Prove that your answer is correct.
- 4. Let (M, d) be compact. Suppose that

$$F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$$

is a decreasing sequence of nonempty closed sets in M, and that $\bigcap_{n=1}^{\infty} F_n$ is contained in some open set G. Show that $F_n \subset G$ for all but finitely many n.

Solution key

Disclaimer

- (i) Some of the following discussion is intended to provide pointers for the solutions only. Flesh out these ideas in greater detail to arrive at a complete solution.
- 1. (a) The set $E = [0, \infty)$ is closed but not compact in the metric space $M = \mathbb{R}$, equipped with the standard metric d(x, y) = |x - y|. To verify that E is closed, we observe that $E^c = (-\infty, 0)$ is open. However, E is not compact, since the open cover of E given by the sets $\{G_j = (-1, j) : j \ge 1\}$ admits no finite subcover.
 - (b) There is no such set. Every compact set is necessarily closed, as shown in Theorem 2.34 of the textbook.
 - (c) There is no such set. We will prove this by contradiction. If possible, let $E \subseteq M$ be an infinite compact set with no limit point in M. This means that for every $x \in M$, there exists $r = r_x > 0$ such that

$$E \cap \left[B(x;r) \setminus \{x\} \right] = \emptyset, \quad \text{where} \quad B(x;r) := \{y \in M : d(x,y) < r\}. \tag{1}$$

The collection of open balls $\{B(x; r_x) : x \in M\}$ is clearly an open cover of M, and hence of E. Since E is compact, we can find $x_1, \dots, x_n \in M$ such that

$$E \subseteq \bigcup_{i=1}^{n} B(x_i; r_{x_i}).$$

The condition (1) implies that each ball $B(x_1; r_{x_i})$ can contain at most one point of E, namely x_i . Thus the cardinality of E is at most n, contradicting our assumption that E is infinite.

(d) In the metric space $M = \mathbb{R}^2$ equipped with the standard Euclidean metric, let us consider the set $E = \overline{B(0;1)} \cup \overline{B(2;1)}$. Then E is connected (why?). However,

$$int(E) = B(0;1) \cup B(2;1)$$

is disconnected. This is because int(E) is the union of two non-empty separated sets B(0;1) and B(2;1).

(e) No such set exists; if E is connected, then so is \overline{E} . Let us prove this by contradiction. Suppose if possible that \overline{E} is disconnected, so it can be written as an union of two nonempty separated sets A and B, namely,

$$\overline{E} = A \cup B, \quad \text{with} \tag{2}$$

$$\overline{A} \cap B = \emptyset, \ A \cap \overline{B} = \emptyset. \tag{3}$$

Intersecting both sides of (2) with E, we find that

$$E = E \cap \overline{E} = (A \cap E) \cup (B \cap E).$$
(4)

We also note that by (3),

$$\overline{(A\cap E)}\cap (B\cap E)\subseteq \overline{A}\cap B=\emptyset, \quad \text{ and } \quad (A\cap E)\cap \overline{(B\cap E)}\subseteq A\cap \overline{B}=\emptyset.$$

Since *E* is assumed to be connected, this implies that either $A \cap E$ or $B \cap E$ is empty, otherwise *E* would be the union of two nontrivial separated sets $A \cap E$ and $B \cap E$. Assume without loss of generality that $B \cap E = \emptyset$, so $A \cap E = E$. This means that $E \subseteq A$, hence $\overline{E} \subset \overline{A}$. In view of (2), this last inclusion means that $B \subseteq \overline{A}$, implying that $B = B \cap \overline{A} = \emptyset$ by (3), a contradiction.

- (f) $M = E = \mathbb{R}^d$ is complete but not compact. Non-compactness is easy to see by the Heine-Borel theorem, since \mathbb{R}^d is unbounded. Fill out the following steps to show that \mathbb{R}^d is complete, i.e., every Cauchy sequence is convergent. *Hint:* Let $\{x_n : n \ge 1\}$ be a Cauchy sequence in \mathbb{R} .
 - First show that every Cauchy sequence is bounded, i.e., there exists a constant R > 0 such that $|x_n| \le R$ for all $n \ge 1$.
 - Since $\overline{B(0;R)}$ is compact in \mathbb{R}^d (Heine-Borel), use (c) to deduce that $\{x_n\}$ has a convergent subsequence, say $\{x_{n_k}\}$, whose limit x lies in $\overline{B(0;R)}$.
 - Show that if $\{x_n\}$ is Cauchy and admits a subsequence $\{x_{n_k}\}$ that converges to x, then $x_n \to x$.
- (g) No such set exists; every compact set is complete. Suppose that $E \subseteq M$ is compact. Let $\{x_n\}$ be a Cauchy sequence in E. We will show that there exists $x \in E$ such that $x_n \to x$, via the following sequence of steps:
 - Assume without loss of generality that $\{x_n\}$ has infinitely many distinct elements. Use part (c) to show that $\{x_n\}$ has a subsequence that converges to a limit $x \in E$.
 - Recycle the proof of the third step in part (f) to show that if $\{x_n\}$ and $x_{n_k} \to x$, then $x_n \to x$.
- 2. (a) For each $n \ge 1$, the total boundedness of M ensures the existence of a finite set D_n with the property

$$M = \bigcup_{x \in D_n} B\left(x; \frac{1}{n}\right).$$

Set $D = \bigcup_{n=1}^{\infty} D_n$. We claim that D is a countable dense subset of M, so that we can conclude that M is separable.

Let us prove this. On one hand, D is a countable union of finite sets, hence countable. On the other hand, for every $x \in M \setminus D$, and given any $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that $1/n < \epsilon$, and $x_n \in D_n \subseteq D$ such that $x \in B(x_n; 1/n) \subseteq B(x; \epsilon)$. Thus every point in $M \setminus D$ is a limit point of D, hence $M = D \cup (M \setminus D) = \overline{D}$, proving that D is dense in M.

- (b) Let M be a countable infinite set and let d be the discrete metric on M. Then since M is countable and $\overline{M} = M$, we have that M is separable (indeed, every countable metric space is separable!). However, M is not totally bounded: if we select $\epsilon = 1/2$, the M cannot be covered by a union of finitely many open neighborhoods of radius ϵ .
- 3. (a) No; in order to show that (ℓ^1, d) is not compact, it suffices to find a sequence $\{p_n\}$ of points in ℓ^1 that does not have a convergent subsequence. For each $n \in \mathbb{N}$, define p_n to be the sequence whose *n*-the element is equal to 1/2, and all other elements are 0. We have that for each index *n*, if $p_n = \{x_i\}$ then

$$\sup\{\sum_{i=1}^{k} |x_i| \colon k \in \mathbb{N}\} = 1/2.$$

Furthermore, if $n \neq m$ then $d(p_n, p_m) = 1$, so certainly this sequence does not have a convergent subsequence.

(b) No; consider the sequence $\{p_n\}$ defined in part a (each of these elements is contained in $N_1(\mathbf{0})$, and let $\epsilon = 1/2$. Since $d(p_n, p_m) = 1$ whenever $n \neq m$, we have that any open neighborhood of the form $N_{1/2}(q)$ can contain at most one element from the infinite sequence $\{p_n\}$. Thus $\{p_n\}$ cannot be contained in a finite union of open neighborhoods of radius 1/2, so certainly $N_1(\mathbf{0})$ cannot be contained in a finite union of open neighborhoods of radius 1/2.

(c) Yes! For each $k \in \mathbb{N}$, define

$$X_k = \{\{p_n\} \colon p_n \in \mathbb{Q} \text{ for all } n, \ p_n = 0 \text{ for all } n > k\}.$$

We have that X_k is in bijective correspondence with \mathbb{Q}^k , so in particular X_k is countable. Define $X = \bigcup_{k=1}^{\infty} X_k$; we have that X is a countable union of countable sets, and is thus countable.

It remains to show that X is dense in ℓ^1 . Let $\{x_n\} \in \ell^1$. We will show that for all $\epsilon > 0$, there exists an element $\{y_n\} \in X$ with $d(x, y) < \epsilon$. Fix a choice of $\epsilon > 0$. Select $k_0 \in \mathbb{N}$ so that

$$\sum_{i=1}^{k_0} |x_i| > \sup\{\sum_{i=1}^{k_0} |x_i| \colon k \in \mathbb{N}\} - \epsilon/2,$$

or equivalently,

$$\sup\{\sum_{i=k_0+1}^k |x_i| \colon k \in \mathbb{N}\} < \epsilon/2.$$

Next, for each $n = 1, ..., k_0$, select a number $y_n \in \mathbb{Q}$ with $|x_n - y_n| < \epsilon/(2k_0)$. For $n > k_0$ define $y_n = 0$. The sequence $\{y_n\}$ defined in this way is an element of X_{k_0} , and is thus an element of X. We have that for every $k \in \mathbb{N}$,

$$\sum_{i=1}^{k} |x_i - y_i| \le \sum_{i=1}^{k_0} |x_i - y_i| + \sum_{i=k_0+1}^{k} |x_i - y_i|$$

$$< \sum_{i=1}^{k_0} \epsilon / (2k_0) + \sum_{i=k_0+1}^{k} |x_i|$$

$$\le \epsilon / 2 + \sup\{\sum_{i=k_0+1}^{k} |p_i| : k \in \mathbb{N}\}$$

$$< \epsilon / 2 + \epsilon / 2$$

$$< \epsilon$$

(d) Yes! let $\{p_m\}$ be a Cauchy sequence in (ℓ^1, d) . For each index m, we will write $p_m = \{x_n^m\}_{n=1}^{\infty}$. Since $\{p_m\}$ is Cauchy, we have that for each $n \in \mathbb{N}$, $\{x_n^m\}_{m=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . Define x_n to be the limit point of the Cauchy sequence $\{x_n^m\}_{m=1}^{\infty}$. Now let $\epsilon > 0$. Select N sufficiently large so that $d(p_m, p_{m'}) \leq \epsilon/4$ whenever $m, m' \geq N$. As in part c, select k_0 sufficiently large so that

$$\sup\{\sum_{i=k_0+1}^k |x_i^N| \colon k \in \mathbb{N}\} \le \epsilon/4.$$

This implies that for all $m \ge N$, we have

$$\sup\{\sum_{i=k_0+1}^k |x_i^m| \colon k \in \mathbb{N}\} \le \epsilon/2.$$

 k_1 sufficiently large so that

$$\sup\{\sum_{i=k_1+1}^k |x_i| \colon k \in \mathbb{N}\} \le \epsilon/4.$$

Let $k_2 = \max(k_0, k_1)$. Since $|x_i^m - x_i| \le |x_i^m| + |x_i|$ for each index *i*, we have that for all $m \ge N$ and all $k \in \mathbb{N}$,

$$\sum_{i=k_2+1}^k |x_i^m - x_i| \colon k \in \mathbb{N} \le 3\epsilon/4.$$

Next, since for each index $i = 1, ..., k_2$, we have that $\{x_i^m\}_{m=1}^{\infty}$ converges to x_i , for each $i = 1, ..., k_2$, there is an index M_i so that $d(x_i^m, x_i) < \epsilon/(4k_2)$ for all $m \ge M_i$. Let $M = \max_{1 \le i \le k_2} M_i$. We have that for all $m \ge M$,

$$\sum_{i=1}^{k_2} |x_i^m - x_i| < \sum_{i=1}^{k_0} \epsilon / (4k_0) = \epsilon / 4.$$

Let $L = \max(N, M)$. We have that for all $m \ge L$ and for all $k \in \mathbb{N}$,

$$\sum_{i=1}^{k} |x_i^m - x_i| \le \sum_{i=1}^{k_2} |x_i^m - x_i| + \sum_{i=k_2+1}^{k} |x_i^m - x_i| < \epsilon/4 + 3\epsilon/4 = \epsilon.$$

All that remains is to show that the sequence $\{x_n\}$ is an element of ℓ_1 . But this follows immediately from the fact that

$$\sup\{\sum_{i=1}^{k} |x_i| \colon k \in \mathbb{N}\} \le \sum_{i=1}^{k_1} |x_i| + \sup\{\sum_{i=k_1+1}^{k} |x_i| \colon k \in \mathbb{N}\}$$
(5)

$$\leq \sum_{i=1}^{k_1} |x_i| + \epsilon/4,\tag{6}$$

which is clearly finite.

4. The decreasing property of F_n and the condition $\cap_n F_n \subseteq G$ imply that

$$M \subseteq \bigcup_{n=1}^{\infty} F_n^c \cup G. \qquad (\text{why?})$$

Since G and ${\cal F}_n^c$ are open sets and M is compact, we can extract a finite subcover:

$$M \subseteq F_{n_1}^c \cup F_{n_2}^c \cup \cdots F_{n_k}^c \cup G, \quad \text{where } n_1 < n_2 < \cdots < n_k.$$

Since the sets F_n^c increase with n, the above inclusion means

$$M \subseteq F_{n_k}^c \cup G.$$

In other words, $F_{n_k} \cap G^c = \emptyset$, or $F_{n_k} \subseteq G$. Since the sets F_n are decreasing, this means that $F_n \subseteq G$ for any $n \ge n_k$, which is the desired conclusion.