
Math 320 Midterm 2 Practice Problems

Instructions

(i) Midterm solutions should be well-crafted, legible and written in complete English sentences.
You will be graded both on accuracy as well as the quality of exposition.

(ii) Theorems stated in the text and proved in class do not need to be reproved. Any other
statement should be justified rigorously.

(iii) Self-contained solutions are optimal. If in doubt whether to include the proof of a statement,
ask your instructor.

1. Let (M,d) be a metric space. For each part of this problem, identify a metric space M , a
distance function d and a set E ⊆M that obeys the specified criteria, or show that no such
set exists.

(a) A closed subset that is not compact

(b) A compact set that is not closed

(c) An infinite compact set with no limit points in M

(d) A connected set whose interior is disconnected

(e) A connected set whose closure is disconnected

(f) A complete set that is not compact

(g) A compact set that is not complete

2. Let us recall that a subset D of a metric space is said to be dense in M if D = M . A metric
space (M,d) is said to be separable if it has a countable dense subset.

(a) Prove that every totally bounded metric space is separable.

(b) Give an example of a separable metric space that is not totally bounded.

3. Consider the metric space (`1, d), where

`1 = {{xn} : sup{
k∑

i=1

|xi| : k ∈ N} is finite},

and

d({xn}, {yn}) = sup{
k∑

i=1

|xi − yi| : k ∈ N}.

(you can assume that d defines a metric; you do not have to prove this.)

If you prefer, you can think of `1 as the set of sequences {xn} with
∑∞

i=1 |xi| finite, and
d({xn}, {yn}) =

∑∞
i=1 |xi − yi|, though we haven’t defined infinite sums yet, which is why

the above definition was provided.

(a) Is (`1, d) compact? Prove that your answer is correct.



(b) Let 0 ∈ `1 be the sequence of all 0s. Is N1(0) totally bounded? Prove that your answer
is correct.

(c) Is (`1, d) separable? Prove that your answer is correct.

(d) Bonus: Is (`1, d) complete? Prove that your answer is correct.

4. Let (M,d) be compact. Suppose that

F1 ⊇ F2 ⊇ F3 ⊇ · · ·

is a decreasing sequence of nonempty closed sets in M , and that ∩∞n=1Fn is contained in
some open set G. Show that Fn ⊂ G for all but finitely many n.



Solution key

Disclaimer

(i) Some of the following discussion is intended to provide pointers for the solutions only. Flesh
out these ideas in greater detail to arrive at a complete solution.

1. (a) The set E = [0,∞) is closed but not compact in the metric space M = R, equipped
with the standard metric d(x, y) = |x− y|. To verify that E is closed, we observe that
Ec = (−∞, 0) is open. However, E is not compact, since the open cover of E given by
the sets {Gj = (−1, j) : j ≥ 1} admits no finite subcover.

(b) There is no such set. Every compact set is necessarily closed, as shown in Theorem
2.34 of the textbook.

(c) There is no such set. We will prove this by contradiction. If possible, let E ⊆M be an
infinite compact set with no limit point in M . This means that for every x ∈M , there
exists r = rx > 0 such that

E ∩
[
B(x; r) \ {x}

]
= ∅, where B(x; r) := {y ∈M : d(x, y) < r}. (1)

The collection of open balls {B(x; rx) : x ∈ M} is clearly an open cover of M , and
hence of E. Since E is compact, we can find x1, · · · , xn ∈M such that

E ⊆
n⋃

i=1

B(xi; rxi).

The condition (1) implies that each ball B(x1; rxi) can contain at most one point of E,
namely xi. Thus the cardinality of E is at most n, contradicting our assumption that
E is infinite.

(d) In the metric space M = R2 equipped with the standard Euclidean metric, let us
consider the set E = B(0; 1) ∪B(2; 1). Then E is connected (why?). However,

int(E) = B(0; 1) ∪B(2; 1)

is disconnected. This is because int(E) is the union of two non-empty separated sets
B(0; 1) and B(2; 1).

(e) No such set exists; if E is connected, then so is E. Let us prove this by contradiction.
Suppose if possible that E is disconnected, so it can be written as an union of two
nonempty separated sets A and B, namely,

E = A ∪B, with (2)

A ∩B = ∅, A ∩B = ∅. (3)

Intersecting both sides of (2) with E, we find that

E = E ∩ E = (A ∩ E) ∪ (B ∩ E). (4)

We also note that by (3),

(A ∩ E) ∩ (B ∩ E) ⊆ A ∩B = ∅, and (A ∩ E) ∩ (B ∩ E) ⊆ A ∩B = ∅.

Since E is assumed to be connected, this implies that either A ∩E or B ∩E is empty,
otherwise E would be the union of two nontrivial separated sets A ∩ E and B ∩ E.
Assume without loss of generality that B ∩ E = ∅, so A ∩ E = E. This means that
E ⊆ A, hence E ⊂ A. In view of (2), this last inclusion means that B ⊆ A, implying
that B = B ∩A = ∅ by (3), a contradiction.



(f) M = E = Rd is complete but not compact. Non-compactness is easy to see by the
Heine-Borel theorem, since Rd is unbounded. Fill out the following steps to show that
Rd is complete, i.e., every Cauchy sequence is convergent. Hint: Let {xn : n ≥ 1} be
a Cauchy sequence in R.

• First show that every Cauchy sequence is bounded, i.e., there exists a constant
R > 0 such that |xn| ≤ R for all n ≥ 1.

• Since B(0;R) is compact in Rd (Heine-Borel), use (c) to deduce that {xn} has a
convergent subsequence, say {xnk

}, whose limit x lies in B(0;R).

• Show that if {xn} is Cauchy and admits a subsequence {xnk
} that converges to x,

then xn → x.

(g) No such set exists; every compact set is complete. Suppose that E ⊆ M is compact.
Let {xn} be a Cauchy sequence in E. We will show that there exists x ∈ E such that
xn → x, via the following sequence of steps:

• Assume without loss of generality that {xn} has infinitely many distinct elements.
Use part (c) to show that {xn} has a subsequence that converges to a limit x ∈ E.

• Recycle the proof of the third step in part (f) to show that if {xn} and xnk
→ x,

then xn → x.

2. (a) For each n ≥ 1, the total boundedness of M ensures the existence of a finite set Dn

with the property

M =
⋃

x∈Dn

B

(
x;

1

n

)
.

Set D = ∪∞n=1Dn. We claim that D is a countable dense subset of M , so that we can
conclude that M is separable.

Let us prove this. On one hand, D is a countable union of finite sets, hence countable.
On the other hand, for every x ∈M \D, and given any ε > 0, there exists n ∈ N such
that 1/n < ε, and xn ∈ Dn ⊆ D such that x ∈ B(xn; 1/n) ⊆ B(x; ε). Thus every point
in M \D is a limit point of D, hence M = D ∪ (M \D) = D, proving that D is dense
in M .

(b) Let M be a countable infinite set and let d be the discrete metric on M . Then since M
is countable and M = M , we have that M is separable (indeed, every countable metric
space is separable!). However, M is not totally bounded: if we select ε = 1/2, the M
cannot be covered by a union of finitely many open neighborhoods of radius ε.

3. (a) No; in order to show that (`1, d) is not compact, it suffices to find a sequence {pn} of
points in `1 that does not have a convergent subsequence. For each n ∈ N, define pn to
be the sequence whose n–the element is equal to 1/2, and all other elements are 0. We
have that for each index n, if pn = {xi} then

sup{
k∑

i=1

|xi| : k ∈ N} = 1/2.

Furthermore, if n 6= m then d(pn, pm) = 1, so certainly this sequence does not have a
convergent subsequence.

(b) No; consider the sequence {pn} defined in part a (each of these elements is contained
in N1(0), and let ε = 1/2. Since d(pn, pm) = 1 whenever n 6= m, we have that
any open neighborhood of the form N1/2(q) can contain at most one element from
the infinite sequence {pn}. Thus {pn} cannot be contained in a finite union of open



neighborhoods of radius 1/2, so certainly N1(0) cannot be contained in a finite union
of open neighborhoods of radius 1/2.

(c) Yes! For each k ∈ N, define

Xk =
{
{pn} : pn ∈ Q for all n, pn = 0 for all n > k

}
.

We have thatXk is in bijective correspondence with Qk, so in particularXk is countable.
Define X =

⋃∞
k=1Xk; we have that X is a countable union of countable sets, and is

thus countable.

It remains to show that X is dense in `1. Let {xn} ∈ `1. We will show that for all
ε > 0, there exists an element {yn} ∈ X with d(x, y) < ε. Fix a choice of ε > 0. Select
k0 ∈ N so that

k0∑
i=1

|xi| > sup{
k0∑
i=1

|xi| : k ∈ N} − ε/2,

or equivalently,

sup{
k∑

i=k0+1

|xi| : k ∈ N} < ε/2.

Next, for each n = 1, . . . , k0, select a number yn ∈ Q with |xn − yn| < ε/(2k0). For
n > k0 define yn = 0. The sequence {yn} defined in this way is an element of Xk0 , and
is thus an element of X. We have that for every k ∈ N,

k∑
i=1

|xi − yi| ≤
k0∑
i=1

|xi − yi|+
k∑

i=k0+1

|xi − yi|

<

k0∑
i=1

ε/(2k0) +

k∑
i=k0+1

|xi|

≤ ε/2 + sup{
k∑

i=k0+1

|pi| : k ∈ N}

< ε/2 + ε/2

< ε

(d) Yes! let {pm} be a Cauchy sequence in (`1, d). For each index m, we will write pm =
{xmn }∞n=1. Since {pm} is Cauchy, we have that for each n ∈ N, {xmn }∞m=1 is a Cauchy
sequence in R. Define xn to be the limit point of the Cauchy sequence {xmn }∞m=1.

Now let ε > 0. Select N sufficiently large so that d(pm, pm′) ≤ ε/4 whenever m,m′ ≥ N .
As in part c, select k0 sufficiently large so that

sup{
k∑

i=k0+1

|xNi | : k ∈ N} ≤ ε/4.

This implies that for all m ≥ N , we have

sup{
k∑

i=k0+1

|xmi | : k ∈ N} ≤ ε/2.

k1 sufficiently large so that

sup{
k∑

i=k1+1

|xi| : k ∈ N} ≤ ε/4.



Let k2 = max(k0, k1). Since |xmi − xi| ≤ |xmi | + |xi| for each index i, we have that for
all m ≥ N and all k ∈ N,

k∑
i=k2+1

|xmi − xi| : k ∈ N ≤ 3ε/4.

Next, since for each index i = 1, . . . , k2, we have that {xmi }∞m=1 converges to xi, for
each i = 1, . . . , k2, there is an index Mi so that d(xmi , xi) < ε/(4k2) for all m ≥ Mi.
Let M = max1≤i≤k2 Mi. We have that for all m ≥M ,

k2∑
i=1

|xmi − xi| <
k0∑
i=1

ε/(4k0) = ε/4.

Let L = max(N,M). We have that for all m ≥ L and for all k ∈ N,

k∑
i=1

|xmi − xi| ≤
k2∑
i=1

|xmi − xi|+
k∑

i=k2+1

|xmi − xi|

< ε/4 + 3ε/4

= ε.

All that remains is to show that the sequence {xn} is an element of `1. But this follows
immediately from the fact that

sup{
k∑

i=1

|xi| : k ∈ N} ≤
k1∑
i=1

|xi|+ sup{
k∑

i=k1+1

|xi| : k ∈ N} (5)

≤
k1∑
i=1

|xi|+ ε/4, (6)

which is clearly finite.

4. The decreasing property of Fn and the condition ∩nFn ⊆ G imply that

M ⊆
∞⋃

n=1

F c
n ∪G. (why?)

Since G and F c
n are open sets and M is compact, we can extract a finite subcover:

M ⊆ F c
n1
∪ F c

n2
∪ · · ·F c

nk
∪G, where n1 < n2 < · · · < nk.

Since the sets F c
n increase with n, the above inclusion means

M ⊆ F c
nk
∪G.

In other words, Fnk
∩ Gc = ∅, or Fnk

⊆ G. Since the sets Fn are decreasing, this means
that Fn ⊆ G for any n ≥ nk, which is the desired conclusion.


