
Math 320 Midterm 1 Practice Problems

Instructions

(i) Midterm solutions should be well-crafted, legible and written in complete English sentences.
You will be graded both on accuracy as well as the quality of exposition.

(ii) Theorems stated in the text and proved in class do not need to be reproved. Any other
statement should be justified rigorously.

(iii) Self-contained solutions are optimal. If in doubt whether to include the proof of a statement,
ask your instructor.

1. Let X and Y be sets and let f : X → Y . Suppose that X is uncountable and that for all
y ∈ Y, the set {x ∈ X : f(x) = y} is countable. Prove that Y is uncountable.

2. Let f : [0, 1] → [0, 1] be a non-decreasing function, i.e. f(x) ≤ f(y) whenever x ≤ y. Let
D ⊂ [0, 1] be the set of points where f is discontinuous. Prove that D is countable.

3. A number α ∈ R is called algebraic if there exists a non-zero polynomial P (x) = anx
n +

. . .+a0 with integer coefficients so that P (α) = 0. A number α ∈ R is called transcendental
if it is non-algebraic. Prove that there exists at least one transcendental number.

4. Let X = N ∪ {a}, where a is an element not contained in N. We will consider the metric
space (X, d), where d is defined as follows: d(a, a) = 0; if n ∈ N, then

d(a, n) = d(n, a) = 2−n+1;

if n,m ∈ N then

d(n,m) =

max(n,m)∑
j=min(n,m)

2−j .

You do not have to prove that d is a metric. Let E = X. What is the set E′ of limit points
of E? Prove that your answer is correct.

5. Let f : N → R with
∑∞

i=1 |f(i)| = A and
∑∞

i=1 |f(i)|2 = 1. Define supp(f) = {n ∈
N : f(n) 6= 0}. Prove that

| supp(f)| ≥ A2.

Here |supp(f)| denotes the cardinality of the set supp(f).

6. Show that any collection of pairwise disjoint, nonempty open intervals in R is at most
countable.

7. Recall the construction of the “Cantor middle-third set” C as given in Problem 3 of Home-
work 4. Determine whether the following statement is true or false, with adequate justifi-
cation. “There exists an open interval I in the Cantor middle-third set C.”

8. We say that a subset A of a metric space (M,d) is bounded if there is some x0 ∈ M and
some constant C <∞ such that d(a, x0) ≤ C for all a ∈ A. The diameter of a set A ⊂ M
is given by

diam(A) = sup{d(a, b) : a, b ∈ A}.

Show that A is bounded if and only if its diameter is finite.



9. Give an example where

diam(A ∪B) > diam(A) + diam(B).

If A ∩B 6= ∅, then show that

diam(A ∪B) ≤ diam(A) + diam(B).

10. Does there exist a metric ρ on R such that any convergent sequence in the usual metric
remains so in (R, ρ), but the sequence {n : n ∈ N} is bounded in (R, ρ)?



Solution key

Disclaimer

(i) Some of the following discussion is intended to provide pointers for the solutions only. Flesh
out these ideas in greater detail to arrive at a complete solution.

1. Solution: Prove the contrapositive. Suppose that Y is countable. Then X =
⋃

y∈Y {x ∈
X : f(x) = y} is a countable union of countable sets, and is thus countable.

2. Hint: Recall that if f is non-decreasing, then limx→a− f(x) and limx→a+ f(x) always exist
(though they need not be equal).

Solution: Since f is non-decreasing, for every a ∈ (0, 1) we have that limx→a− f(x) and
limx→a+ f(x) exist. Thus f is discontinuous at a if and only if limx→a− f(x) < limx→a+ f(x).
Such discontinuities are called “jump discontinuities.”

For each n ∈ N, let Xn = {a ∈ [0, 1] : limx→a+ f(x) − limx→a− f(x) > 1/n}. Then D =⋃∞
n=1Xn. If D is uncountable, then at least one Xn must be uncountable (since a countable

union of countable sets is countable). In particular, at least one of these sets Xn must be
infinite. But since f(0) ≥ 0 and f(1) ≤ 1, we must have that |Xn| ≤ n for each n ∈ N , and
in particular, each set Xn must be finite.

3. Solution: First, observe that for each n ∈ N, the set of polynomials of degree ≤ n with
integer coefficients is countable, since it can be put in bijective correspondence with Zn+1

via the bijection (a0, ...an) 7→ P (x) = anx
n + . . . + a0. Thus the set of polynomials with

integer coefficients is a countable union of countable sets, and is thus countable. For each
polynomial P , let SP = {x ∈ R : P (x) = 0}. This set is finite (indeed, it has cardinality
at most the degree of P). Thus A =

⋃
P SP is a countable union of countable sets, and

is thus countable, where the union is taken over all non-zero polynomials with integer
coefficients. However, the set A is precisely the set of algebraic numbers. We conclude that
A is countable. If A = R then this would imply that R is countable, which we know is not
the case. Thus R\A is non-empty, i.e. there exists at least one transcendental number.

4. Solution: We will prove that E′ = {a}. Indeed, let n ∈ N. Then selecting r = 2−n−1, we
see that Nr(n) = {n}, so n is not in E′. On the other hand, for every r > 0 there exists
a natural number m so that 2−m < r, so m ∈ Nr(a) and thus Nr(a) ∩ E contains a point
other than a. We conclude that E′ = {a}.

5. Solution: If supp(f) is infinite then the result is immediately true. If supp(f) is finite, then
let n = | supp(f)|. Without loss of generality, we can assume that supp(f) = {1, . . . , n}.
By Cauchy-Schwarz, we have

A2 =
( n∑
i=1

f(i)
)2

=
( n∑
i=1

1f(i)
)2 ≤ ( n∑

i=1

12
)( n∑

i=1

f(i)2
)

= n
( n∑
i=1

f(i)2
)

= n.

Taking square roots of both sides, we obtain

A ≤
√
n,

as desired.

6. Hint : Each interval contains a rational!



7. Solution: False. The Cantor middle-third set C is nowhere dense, i.e. contains no
nonempty open intervals. We will show that

given any x, y ∈ C, x < y, there exists z ∈ [0, 1] \ C such that x < z < y. (1)

Recall that

C =

∞⋂
n=1

Cn,

where Cn, the set obtained at the n-th step of the Cantor construction, is a disjoint union
of 2n closed intervals (called n-th stage basic intervals), each of length 3−n. Given x, y as
above, there exists a largest positive integer n such that both x and y lie inside a common
n-th stage basic interval, say I = [a, b]. At the (n+ 1)-th step, I is decomposed into three
equal and disjoint pieces

I =

3⋃
j=1

Ij , with I1 =
[
a, a+

b− a
3

]
, I3 =

[
b− b− a

3
, b
]

and the middle third portion I2 is thrown away. In particular, z = a+(b−a)/2 = (a+b)/2 /∈
C. By the maximality of n, we also know that x ∈ I1 and y ∈ I3, proving (1).

8. Hint: Use the triangle inequality.

9. Solution: Let A = [0, 1], B = [99, 100]. Then

diam(A ∪B) = 100 > 1 + 1 = diam(A) + diam(B).

Suppose that x0 ∈ A∩B. Then for any x, y ∈ A∪B such that x ∈ A and y ∈ B, we obtain
from the triangle inequality that

d(x, y) ≤ d(x, x0) + d(y, x0) ≤ diam(A) + diam(B).

If x and y both lie in A (or in B), the inequality is trivially true because d(x, y) ≤ diam(A) ≤
diam(A) + diam(B). Thus, diam(A) + diam(B) is an upper bound for the set {d(x, y) :
x, y ∈ A ∪B}. Since diam(A ∪B) = sup{d(x, y) : x, y ∈ A ∪B}, the result follows.

10. Hint: Yes. Try ρ = d/(1 + d) (or a variant), where d is the usual metric.


