Instructions

- (i) Midterm solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) Self-contained solutions are optimal. If in doubt whether to include the proof of a statement, ask your instructor.
 - 1. Let X and Y be sets and let $f: X \to Y$. Suppose that X is uncountable and that for all $y \in Y$, the set $\{x \in X : f(x) = y\}$ is countable. Prove that Y is uncountable.
 - 2. Let $f : [0,1] \to [0,1]$ be a non-decreasing function, i.e. $f(x) \leq f(y)$ whenever $x \leq y$. Let $D \subset [0,1]$ be the set of points where f is discontinuous. Prove that D is countable.
 - 3. A number $\alpha \in \mathbb{R}$ is called *algebraic* if there exists a non-zero polynomial $P(x) = a_n x^n + \dots + a_0$ with integer coefficients so that $P(\alpha) = 0$. A number $\alpha \in \mathbb{R}$ is called *transcendental* if it is non-algebraic. Prove that there exists at least one transcendental number.
 - 4. Let $X = \mathbb{N} \cup \{a\}$, where a is an element not contained in \mathbb{N} . We will consider the metric space (X, d), where d is defined as follows: d(a, a) = 0; if $n \in \mathbb{N}$, then

$$d(a,n) = d(n,a) = 2^{-n+1};$$

if $n, m \in \mathbb{N}$ then

$$d(n,m) = \sum_{j=\min(n,m)}^{\max(n,m)} 2^{-j}.$$

You do not have to prove that d is a metric. Let E = X. What is the set E' of limit points of E? Prove that your answer is correct.

5. Let $f: \mathbb{N} \to \mathbb{R}$ with $\sum_{i=1}^{\infty} |f(i)| = A$ and $\sum_{i=1}^{\infty} |f(i)|^2 = 1$. Define $\operatorname{supp}(f) = \{n \in \mathbb{N}: f(n) \neq 0\}$. Prove that

 $|\operatorname{supp}(f)| \ge A^2.$

Here $|\operatorname{supp}(f)|$ denotes the cardinality of the set $\operatorname{supp}(f)$.

- 6. Show that any collection of pairwise disjoint, nonempty open intervals in \mathbb{R} is at most countable.
- 7. Recall the construction of the "Cantor middle-third set" C as given in Problem 3 of Homework 4. Determine whether the following statement is true or false, with adequate justification. "There exists an open interval I in the Cantor middle-third set C."
- 8. We say that a subset A of a metric space (M, d) is bounded if there is some $x_0 \in M$ and some constant $C < \infty$ such that $d(a, x_0) \leq C$ for all $a \in A$. The diameter of a set $A \subset M$ is given by

$$\operatorname{diam}(A) = \sup\{d(a, b) : a, b \in A\}.$$

Show that A is bounded if and only if its diameter is finite.

9. Give an example where

$$\operatorname{diam}(A \cup B) > \operatorname{diam}(A) + \operatorname{diam}(B).$$

If $A \cap B \neq \emptyset$, then show that

$$\operatorname{diam}(A \cup B) \le \operatorname{diam}(A) + \operatorname{diam}(B).$$

10. Does there exist a metric ρ on \mathbb{R} such that any convergent sequence in the usual metric remains so in (\mathbb{R}, ρ) , but the sequence $\{n : n \in \mathbb{N}\}$ is bounded in (\mathbb{R}, ρ) ?

Disclaimer

- (i) Some of the following discussion is intended to provide pointers for the solutions only. Flesh out these ideas in greater detail to arrive at a complete solution.
- 1. Solution: Prove the contrapositive. Suppose that Y is countable. Then $X = \bigcup_{y \in Y} \{x \in X : f(x) = y\}$ is a countable union of countable sets, and is thus countable.
- 2. *Hint:* Recall that if f is non-decreasing, then $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ always exist (though they need not be equal).

Solution: Since f is non-decreasing, for every $a \in (0, 1)$ we have that $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist. Thus f is discontinuous at a if and only if $\lim_{x \to a^-} f(x) < \lim_{x \to a^+} f(x)$. Such discontinuities are called "jump discontinuities."

For each $n \in \mathbb{N}$, let $X_n = \{a \in [0,1] : \lim_{x \to a^+} f(x) - \lim_{x \to a^-} f(x) > 1/n\}$. Then $D = \bigcup_{n=1}^{\infty} X_n$. If D is uncountable, then at least one X_n must be uncountable (since a countable union of countable sets is countable). In particular, at least one of these sets X_n must be infinite. But since $f(0) \ge 0$ and $f(1) \le 1$, we must have that $|X_n| \le n$ for each $n \in N$, and in particular, each set X_n must be finite.

- 3. Solution: First, observe that for each $n \in \mathbb{N}$, the set of polynomials of degree $\leq n$ with integer coefficients is countable, since it can be put in bijective correspondence with \mathbb{Z}^{n+1} via the bijection $(a_0, ...a_n) \mapsto P(x) = a_n x^n + ... + a_0$. Thus the set of polynomials with integer coefficients is a countable union of countable sets, and is thus countable. For each polynomial P, let $S_P = \{x \in \mathbb{R} : P(x) = 0\}$. This set is finite (indeed, it has cardinality at most the degree of P). Thus $A = \bigcup_P S_P$ is a countable union of countable sets, and is thus countable, where the union is taken over all non-zero polynomials with integer coefficients. However, the set A is precisely the set of algebraic numbers. We conclude that A is countable. If $A = \mathbb{R}$ then this would imply that \mathbb{R} is countable, which we know is not the case. Thus $\mathbb{R} \setminus A$ is non-empty, i.e. there exists at least one transcendental number.
- 4. Solution: We will prove that $E' = \{a\}$. Indeed, let $n \in \mathbb{N}$. Then selecting $r = 2^{-n-1}$, we see that $N_r(n) = \{n\}$, so n is not in E'. On the other hand, for every r > 0 there exists a natural number m so that $2^{-m} < r$, so $m \in N_r(a)$ and thus $N_r(a) \cap E$ contains a point other than a. We conclude that $E' = \{a\}$.
- 5. Solution: If $\operatorname{supp}(f)$ is infinite then the result is immediately true. If $\operatorname{supp}(f)$ is finite, then let $n = |\operatorname{supp}(f)|$. Without loss of generality, we can assume that $\operatorname{supp}(f) = \{1, \ldots, n\}$. By Cauchy-Schwarz, we have

$$A^{2} = \big(\sum_{i=1}^{n} f(i)\big)^{2} = \big(\sum_{i=1}^{n} 1f(i)\big)^{2} \le \big(\sum_{i=1}^{n} 1^{2}\big)\big(\sum_{i=1}^{n} f(i)^{2}\big) = n\big(\sum_{i=1}^{n} f(i)^{2}\big) = n.$$

Taking square roots of both sides, we obtain

 $A \leq \sqrt{n}$,

as desired.

6. *Hint* : Each interval contains a rational!

7. Solution: False. The Cantor middle-third set C is nowhere dense, i.e. contains no nonempty open intervals. We will show that

given any $x, y \in C$, x < y, there exists $z \in [0, 1] \setminus C$ such that x < z < y. (1)

Recall that

$$C = \bigcap_{n=1}^{\infty} C_n,$$

where C_n , the set obtained at the *n*-th step of the Cantor construction, is a disjoint union of 2^n closed intervals (called *n*-th stage *basic intervals*), each of length 3^{-n} . Given x, y as above, there exists a largest positive integer *n* such that both *x* and *y* lie inside a common *n*-th stage basic interval, say I = [a, b]. At the (n + 1)-th step, *I* is decomposed into three equal and disjoint pieces

$$I = \bigcup_{j=1}^{3} I_j$$
, with $I_1 = \left[a, a + \frac{b-a}{3}\right]$, $I_3 = \left[b - \frac{b-a}{3}, b\right]$

and the middle third portion I_2 is thrown away. In particular, $z = a + (b-a)/2 = (a+b)/2 \notin C$. By the maximality of n, we also know that $x \in I_1$ and $y \in I_3$, proving (1).

- 8. *Hint:* Use the triangle inequality.
- 9. Solution: Let A = [0, 1], B = [99, 100]. Then

$$diam(A \cup B) = 100 > 1 + 1 = diam(A) + diam(B).$$

Suppose that $x_0 \in A \cap B$. Then for any $x, y \in A \cup B$ such that $x \in A$ and $y \in B$, we obtain from the triangle inequality that

$$d(x, y) \le d(x, x_0) + d(y, x_0) \le \operatorname{diam}(A) + \operatorname{diam}(B).$$

If x and y both lie in A (or in B), the inequality is trivially true because $d(x, y) \leq \text{diam}(A) \leq \text{diam}(A) + \text{diam}(B)$. Thus, diam(A) + diam(B) is an upper bound for the set $\{d(x, y) : x, y \in A \cup B\}$. Since $\text{diam}(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}$, the result follows.

10. *Hint:* Yes. Try $\rho = d/(1+d)$ (or a variant), where d is the usual metric.