Math 320, Fall 2018 Midterm 2 Solutions

Name:

SID:

Instructions

- The total time is 50 minutes.
- The maximum score is 100 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Partial credit will be assigned to the clarity and presentation style of solutions. Please ensure that your answers are effectively comunicated.
- No clarification will be given for any problems; if you believe a problem is ambiguous, interpret it as best you can and write down any assumptions you feel are necessary.

Problem	Points	Score
1	35	
2	25	
3	25	
4	15	
MAX	100	

1. a) State the Heine-Borel Theorem, and give an example.

Solution. Let (X, d) denote the metric space \mathbb{R}^{n} equipped with the standard Euclidean metric. The Heine-Borel theorem states that a set is compact in (X, d) if and only if it is closed and bounded.

For example, the unit interval $[0,1]$ is compact in \mathbb{R}.
b) State the definition for what it means for a set E in a metric space X to be connected, and give an example.

Solution. Let (X, d) be a metric space. We say that a set $E \subseteq$ X admits a nontrivial separation if there exist sets nonempty sets A and B such that

$$
E=A \cup B, \quad \bar{A} \cap B=\emptyset, \quad A \cap \bar{B}=\emptyset
$$

A set E is said to be connected in it does not admit any nontrivial separation.

The unit interval $[0,1]$ is connected in \mathbb{R}.
c) Let $\left\{p_{n}\right\}$ be a sequence of real numbers. State the definition of

$$
\limsup _{n \rightarrow \infty} p_{n}
$$

Give an example of a sequence that is not eventually constant, and compute limsup for that sequence.
(15 points)
Solution.

$$
\limsup _{n \rightarrow \infty} p_{n}=\sup \left\{\alpha: \alpha \text { is a limit point of }\left\{p_{n}\right\}\right\} .
$$

Example 1: The lim sup of any convergent sequence is its limit. Thus

$$
\limsup \frac{1}{n}=0
$$

Example 2: Another example of the lim sup of a non-convergent sequence is

$$
\limsup _{n \rightarrow \infty} p_{n}=\limsup _{n \rightarrow \infty}(-1)^{n}\left(1+\frac{1}{n}\right)=1 .
$$

2. Let X be the set of all infinite binary strings (i.e. the set of all infinite sequences whose entries are either 0 or 1). Given elements $b=\left(b_{1}, b_{2}, \ldots\right)$ and $b^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right)$ of X, define

$$
d\left(b, b^{\prime}\right)=\sup \left\{\sum_{k=1}^{n} 2^{-k}\left|b_{k}-b_{k}^{\prime}\right|: n \in \mathbb{N}\right\}=\sum_{k=1}^{\infty} 2^{-k}\left|b_{k}-b_{k}^{\prime}\right| .
$$

(X, d) is a metric space (you do not need to prove this).
Is this metric space complete? Prove that your answer is correct.
(25 points)
Solution. We argue that X is complete, i.e., every Cauchy sequence in X converges.
Let $\left\{b^{(k)}: k \geq 1\right\}$ denote a Cauchy sequence in X, i.e.,

$$
d\left(b^{(k)}, b^{(\ell)}\right)=\sum_{n=1}^{\infty} 2^{-n}\left|b_{n}^{(k)}-b_{n}^{(\ell)}\right| \rightarrow 0 \text { as } k, \ell \rightarrow \infty .
$$

We need to determine the limit of this sequence.
For each $n \geq 1$,

$$
2^{-n}\left|b_{n}^{(k)}-b_{n}^{(\ell)}\right| \leq d\left(b^{(k)}, b^{(\ell)}\right) \rightarrow 0 \text { as } k, \ell \rightarrow \infty .
$$

In other words, for each $n \geq 1$, the sequence $\left\{b_{n}^{(k)}: k \geq 1\right\}$ is a Cauchy sequence consisting only of two elements 0 or 1 . Hence it must be eventually constant, hence

$$
b_{n}:=\lim _{k \rightarrow \infty} b_{n}^{(k)} \quad \text { exists. }
$$

We now proceed to show that $b \in X$ given by $b:=\left(b_{1}, b_{2}, \cdots, b_{n}, \cdots\right)$ is the limit of the Cauchy sequence $\left\{b^{(k)}: k \geq 1\right\}$. Fix $\epsilon>0$.

Choose $N, K \geq 1$ so that

$$
\begin{align*}
& \sum_{n=N+1}^{\infty} 2^{-n}=2^{-N}<\frac{\epsilon}{2}, \text { and } \tag{1}\\
& \left|b_{n}^{(k)}-b_{n}\right|<\epsilon / 2 \text { for all } n \leq N \text { and } k \geq K .
\end{align*}
$$

Combining (1) and (2) with the fact that $\left|b_{n}^{(k)}-b_{n}\right| \leq 1$ leads to the following estimate: for all $k \geq K$,

$$
\begin{aligned}
d\left(b^{(k)}, b\right) & =\sum_{n=1}^{\infty} 2^{-n}\left|b_{n}^{(k)}-b_{n}\right| \\
& \leq \sum_{n=1}^{N} 2^{-n}\left|b_{n}^{(k)}-b_{n}\right|+\sum_{n=N+1}^{\infty} 2^{-n} \\
& \leq \sum_{n=1}^{N} 2^{-n} \frac{\epsilon}{2}+2^{-N}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Thus $b=\lim _{k \rightarrow \infty} b^{(k)}$, as claimed.
3. Prove that every uncountable subset of \mathbb{R} has a limit point.

Hint: If $S \subset \mathbb{R}$ is uncountable, it might be helpful to consider $S \cap[-n, n]$.

Proof. We know that a countable union of countable sets is countable. Since S can be written as the countable union

$$
S=\bigcup_{n=1}^{\infty} S \cap[-n, n]
$$

at least one of the sets $S \cap[-n, n]$ must be uncountable. This is an infinite subset of the compact set $[-n, n]$, and thus has a limit point.
4. Let (X, d) be a metric space and let $\left\{p_{n}\right\}$ be a sequence in X. Consider the set of subsequences of $\left\{p_{n}\right\}$, i.e. the set
$\left\{\left\{q_{n}\right\}\right.$ a sequence in $X,\left\{q_{n}\right\}$ is a subsequence of $\left.\left\{p_{n}\right\}\right\}$. Prove that this set cannot be countably infinite, i.e. it must either be finite or uncountable.
Hint: it might be helpful to consider the following two cases: either $\left\{p_{n}\right\}$ is eventually constant, or it isn't.

Solution. Case 1: $\left\{p_{n}\right\}$ is eventually constant. Let us say that $p_{n}=p$ for all $n \geq N$. Thus the distinct elements in the sequence can occur only in the first N slots, and are therefore at most N in number. A subsequence of $\left\{p_{n}\right\}$ is obtained by choosing an ordered subset (which could be empty) out of these first N elements, and adding a constant string of p. Thus the possible number of distinct subsequences is at most 2^{N}, which is finite.
Case 2: $\left\{p_{n}\right\}$ has infinitely many distinct elements. Without loss of generality (after passing to a subsequence if necessary), we may assume that no element in $\left\{p_{n}\right\}$ is repeated. Let \mathcal{A} denote the collection of all infinite binary strings that contain infinitely many 1 -s. We know that \mathcal{A} is uncountable. Further, each $a=$ $\left(a_{1}, a_{2}, \cdots\right) \in \mathcal{A}$ generates a subsequence $\left\{q_{n}\right\}$ of $\left\{p_{n}\right\}$ as follows:

$$
q_{n}=p_{a_{n}} .
$$

This gives rise to uncountably many distinct subsequences.
Case 3: $\left\{p_{n}\right\}$ has finitely many distinct elements, but is not eventually constant. In this case, one can find two numbers α and β that occur in the sequence $\left\{p_{n}\right\}$ infinitely often. Then all possible binary strings consisting of α and β are subsequences of $\left\{p_{n}\right\}$. The collection of such strings is of uncountable cardinality, completing the proof.

