
Math 320, Fall 2018

Midterm 2 Solutions

Name: SID:

Instructions

• The total time is 50 minutes.
• The maximum score is 100 points.
• Use the reverse side of each page if you need extra space.
• Show all your work. A correct answer without intermediate

steps will receive no credit.
• Partial credit will be assigned to the clarity and presentation

style of solutions. Please ensure that your answers are effec-
tively comunicated.
• No clarification will be given for any problems; if you believe

a problem is ambiguous, interpret it as best you can and write
down any assumptions you feel are necessary.

Problem Points Score
1 35
2 25
3 25
4 15

MAX 100
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1. a) State the Heine-Borel Theorem, and give an exam-
ple.

(10 points)

Solution. Let (X, d) denote the metric space Rn equipped with
the standard Euclidean metric. The Heine-Borel theorem states
that a set is compact in (X, d) if and only if it is closed and
bounded.

For example, the unit interval [0, 1] is compact in R. �

b) State the definition for what it means for a set E
in a metric space X to be connected, and give an
example.

(10 points)

Solution. Let (X, d) be a metric space. We say that a set E ⊆
X admits a nontrivial separation if there exist sets nonempty
sets A and B such that

E = A ∪B, A ∩B = ∅, A ∩B = ∅.
A set E is said to be connected in it does not admit any non-
trivial separation.

The unit interval [0, 1] is connected in R. �
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c) Let {pn} be a sequence of real numbers. State the
definition of

lim sup
n→∞

pn.

Give an example of a sequence that is not eventually
constant, and compute lim sup for that sequence.

(15 points)

Solution.

lim sup
n→∞

pn = sup
{
α : α is a limit point of {pn}

}
.

Example 1: The lim sup of any convergent sequence is its
limit. Thus

lim sup
1

n
= 0.

Example 2: Another example of the lim sup of a non-convergent
sequence is

lim sup
n→∞

pn = lim sup
n→∞

(−1)n
(

1 +
1

n

)
= 1.

�
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2. Let X be the set of all infinite binary strings (i.e. the
set of all infinite sequences whose entries are either 0
or 1). Given elements b = (b1, b2, . . .) and b′ = (b′1, b

′
2, . . .)

of X, define

d(b, b′) = sup
{ n∑

k=1

2−k|bk − b′k| : n ∈ N
}

=

∞∑
k=1

2−k|bk − b′k|.

(X, d) is a metric space (you do not need to prove this).
Is this metric space complete? Prove that your an-

swer is correct.

(25 points)

Solution. We argue that X is complete, i.e., every Cauchy se-
quence in X converges.

Let {b(k) : k ≥ 1} denote a Cauchy sequence in X , i.e.,

d
(
b(k), b(`)

)
=

∞∑
n=1

2−n|b(k)n − b(`)n | → 0 as k, `→∞.

We need to determine the limit of this sequence.

For each n ≥ 1,

2−n|b(k)n − b(`)n | ≤ d
(
b(k), b(`)

)
→ 0 as k, `→∞.

In other words, for each n ≥ 1, the sequence {b(k)n : k ≥ 1} is a
Cauchy sequence consisting only of two elements 0 or 1. Hence it
must be eventually constant, hence

bn := lim
k→∞

b(k)n exists.

We now proceed to show that b ∈ X given by b := (b1, b2, · · · , bn, · · · )
is the limit of the Cauchy sequence {b(k) : k ≥ 1}. Fix ε > 0.
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Choose N,K ≥ 1 so that
∞∑

n=N+1

2−n = 2−N <
ε

2
, and(1)

|b(k)n − bn| < ε/2 for all n ≤ N and k ≥ K.(2)

Combining (1) and (2) with the fact that |b(k)n − bn| ≤ 1 leads to
the following estimate: for all k ≥ K,

d(b(k), b) =

∞∑
n=1

2−n
∣∣b(k)n − bn

∣∣
≤

N∑
n=1

2−n|b(k)n − bn| +
∞∑

n=N+1

2−n

≤
N∑
n=1

2−n
ε

2
+ 2−N <

ε

2
+
ε

2
= ε.

Thus b = limk→∞ b
(k), as claimed. �
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3. Prove that every uncountable subset of R has a limit
point.

Hint: If S ⊂ R is uncountable, it might be helpful to consider
S ∩ [−n, n].

(25 points)

Proof. We know that a countable union of countable sets is count-
able. Since S can be written as the countable union

S =

∞⋃
n=1

S ∩ [−n, n],

at least one of the sets S ∩ [−n, n] must be uncountable. This is
an infinite subset of the compact set [−n, n], and thus has a limit
point. �
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4. Let (X, d) be a metric space and let {pn} be a sequence
in X. Consider the set of subsequences of {pn}, i.e.
the set{
{qn} a sequence in X, {qn} is a subsequence of {pn}

}
.

Prove that this set cannot be countably infinite, i.e.
it must either be finite or uncountable.

Hint: it might be helpful to consider the following two cases:
either {pn} is eventually constant, or it isn’t.

(15 points)

Solution. Case 1: {pn} is eventually constant. Let us say that
pn = p for all n ≥ N . Thus the distinct elements in the sequence
can occur only in the first N slots, and are therefore at most N in
number. A subsequence of {pn} is obtained by choosing an ordered
subset (which could be empty) out of these first N elements, and
adding a constant string of p. Thus the possible number of distinct
subsequences is at most 2N , which is finite.

Case 2: {pn} has infinitely many distinct elements. Without
loss of generality (after passing to a subsequence if necessary), we
may assume that no element in {pn} is repeated. Let A denote
the collection of all infinite binary strings that contain infinitely
many 1-s. We know that A is uncountable. Further, each a =
(a1, a2, · · · ) ∈ A generates a subsequence {qn} of {pn} as follows:

qn = pan.

This gives rise to uncountably many distinct subsequences.

Case 3: {pn} has finitely many distinct elements, but is not
eventually constant. In this case, one can find two numbers α
and β that occur in the sequence {pn} infinitely often. Then all
possible binary strings consisting of α and β are subsequences of
{pn}. The collection of such strings is of uncountable cardinality,
completing the proof. �


