Math 320, Fall 2018
 Midterm 1 Solution

Name:

SID:

Instructions

- The total time is 50 minutes.
- The maximum score is 100 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Partial credit will be assigned to the clarity and presentation style of solutions. Please ensure that your answers are effectively comunicated.
- No clarification will be given for any problems; if you believe a problem is ambiguous, interpret it as best you can and write down any assumptions you feel are necessary.

Problem	Points	Score
1	$10 \times 3=30$	
2	20	
3	20	
4	$30+10$ (extra credit)	
MAX	100	

1. For each term below, give a complete definition and an example. Prove (or demonstrate) that your example matches the definition that you give.
(a) Supremum of a set $A \subseteq \mathbb{R}$.

$$
(5+5=10 \text { points })
$$

Solution. Let A be a nonempty subset of \mathbb{R} that is bounded above. A point $a_{0} \in \mathbb{R}$ is said to be the supremum of A, denoted $\sup (A)$ if both of the following conditions hold:

- $a \leq a_{0}$ for all $a \in A$
- if $b \in \mathbb{R}$ is an upper bound of A (i.e., $a \leq b$ for all $a \in A$), then $a_{0} \leq b$.

Example: Let $A=[0,1]$, then $\sup (A)=1$.
(b) A limit point of a subset E in a metric space (X, d).

$$
(5+5=10 \text { points })
$$

Solution. A point $p \in X$ is said to be a limit point of $E \subset X$ if for every $\epsilon>0$, there exists $q \neq p, q \in E$ such that $d(p, q)<\epsilon$. Example: The origin 0 is a limit point of $E=\{1 / n: n \geq$ $1\} \subseteq \mathbb{R}$.
(c) A countably infinite set.

$$
(5+5=10 \text { points })
$$

Solution. A set A is called countably infinite if there exists a bijection $f: \mathbb{N} \rightarrow A$, where \mathbb{N} denotes the set of natural numbers.
Example: The set of positive even integers $A=\{2,4, \cdots\}$ is countably infinite; $f(n)=2 n$ provides the bijection from \mathbb{N} onto A.
2. A number $\alpha \in \mathbb{R}$ is called algebraic if there exists a non-zero polynomial P with integer coefficients so that $P(\alpha)=0$. A real number that is not algebraic is called transcendental. Prove that the set of transcendental numbers is uncountable.
(20 points)
Solution. First, observe that for each $n \in \mathbb{N}$, the set of polynomials of degree $\leq n$ with integer coefficients is countable, since it can be put in bijective correspondence with \mathbb{Z}^{n+1} via the bijection $\left(a_{0}, \ldots a_{n}\right) \mapsto P(x)=a_{n} x^{n}+\ldots+a_{0}$. Thus the set of polynomials with integer coefficients is a countable union of countable sets, and is thus countable. For each polynomial P, let $S_{P}=\{x \in \mathbb{R}: P(x)=0\}$. This set is finite (indeed, it has cardinality at most the degree of $P)$. Thus $A=\bigcup_{P} S_{P}$ is a countable union of countable sets, and is thus countable, where the union is taken over all non-zero polynomials with integer coefficients. However, the set A is precisely the set of algebraic numbers. We conclude that A is countable.

Suppose if possible that the set A^{c} of transcendental numbers is countable. This would imply that $\mathbb{R}=A \cup A^{c}$ is the union of two countable sets, hence countable. But this contradicts the fact (proved in class and the textbook) that \mathbb{R} is uncountable.
3. Define $C_{0}=[0,1]$; this is a union of $2^{0}=1$ closed intervals, each of length $3^{0}=1$. Define $C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$; this set contains 2^{1} intervals, each of length 3^{-1}; it is obtained by removing the middle third of each interval from C_{0}. For each $i=2,3, \ldots$, define C_{i} to be the union of 2^{i} closed intervals, each of length 3^{-i}, obtained by removing the middle third of each of the intervals from C_{i-1}. Define $\mathcal{C}=\bigcap_{i=0}^{\infty} C_{i}$.
Prove that \mathcal{C} does not contain a non-empty open interval.
(20 points)
Solution. We will show that given any $x, y \in \mathcal{C}, x<y$,
(1) \quad there exists $z \in[0,1] \backslash \mathcal{C}$ such that $x<z<y$.

We have been given that

$$
\mathcal{C}=\bigcap_{n=1}^{\infty} C_{n},
$$

where C_{n}, the set obtained at the n-th step of the Cantor construction, is a disjoint union of 2^{n} closed intervals (called n-th stage $b a$ sic intervals), each of length 3^{-n}. In particular, the length of an nth stage basic interval goes to zero as $n \rightarrow \infty$. Therefore, given $x, y \in \mathcal{C}, x<y$, one can find $m_{0} \geq 1$ such that $3^{-m}<|x-y|$ for all $m \geq m_{0}$. This means that x and y cannot lie in the same m-th basic interval for any $m \geq m_{0}$. Let n denote the largest positive integer such that both x and y lie inside a common n-th stage basic interval, say $I=[a, b]$. Since n has to be a non-negative integer smaller than m_{0}, such an integer must exist.
At the $(n+1)$-th step, I is decomposed into three equal and disjoint pieces

$$
I=\bigcup_{j=1}^{3} I_{j}, \quad \text { with } I_{1}=\left[a, a+\frac{b-a}{3}\right], \quad I_{3}=\left[b-\frac{b-a}{3}, b\right]
$$

and the middle third portion I_{2} is thrown away. In particular, $z=a+(b-a) / 2=(a+b) / 2 \notin \mathcal{C}$. By the maximality of n, we also know that $x \in I_{1}$ and $y \in I_{3}$, proving (1).
4. Give brief answers to the questions below. Your answer should be in the form of a short proof or a counterexample, as appropriate.
(a) Let d be the usual metric on \mathbb{R}, i.e. $d(x, y)=|x-y|$. If $E=\mathbb{Q} \cap[0,1] \subset \mathbb{R}$, what is its closure \bar{E} ?
(10 points)
Solution. $\bar{E}=[0,1]$. This is because rationals are dense; for any $x \in[0,1]$ and any $\epsilon>0$, there exists $r \in E \cap(x-\epsilon, x+$ $\epsilon)$.
(b) Determine whether the following statement is true or false. For sets $A, B \subseteq \mathbb{R}$ that are bounded above, one always has

$$
\sup (A-B)=\sup (A)-\sup (B)
$$

Here $A-B=\{a-b: a \in A, b \in B\}$.
(10 points)

Solution. The statement is false. Choose $A=B=[-1,1]$. Then $A-B=[-2,2]$, so $\sup (A-B)=2$, whereas $\sup (A)-$ $\sup (B)=0$.
(c) Let d_{1} and d_{2} be two metrics on \mathbb{R}^{2} given by

$$
\begin{aligned}
& d_{1}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| \\
& d_{2}(x, y)=\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

for all points $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Show that

$$
\frac{1}{\sqrt{2}} d_{1}(x, y) \leq d_{2}(x, y) \leq d_{1}(x, y) \text { for all } x, y \in \mathbb{R}^{2}
$$

(10 points)

Proof. Given any two non-negative reals a and b, it is easy to see that $a^{2}+b^{2} \leq a^{2}+b^{2}+2 a b=(a+b)^{2}$. It also follows from the Cauchy-Schwarz inequality that $(a+b) \leq \sqrt{2} \sqrt{a^{2}+b^{2}}$. Setting $a=\left|x_{1}-y_{1}\right|, b=\left|x_{2}-y_{2}\right|$ leads to the desired inequalities.
(d) (Extra credit) Determine whether the following statement is true or false. There exists an uncountable collection of sets $\left\{\mathbb{S}_{\alpha}\right\}$ such that

- Each set \mathbb{S}_{α} is a subset of \mathbb{N}
- each \mathbb{S}_{α} is infinite
- For every pair \mathbb{S}_{α} and \mathbb{S}_{β} with $\alpha \neq \beta$, we have that $\mathbb{S}_{\alpha} \cap \mathbb{S}_{\beta}$ is finite
Here \mathbb{N} denotes the set of positive integers.
(10 points)
Solution. Let A denote all infinite binary sequences (whose entries are either 0 or 1) consisting of infinitely many 1 -s. We know that A is uncountable. Let $\mathcal{P}=\left\{p_{1}<p_{2}<p_{3}<\cdots\right\}$ be the set of primes. For each $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \cdots\right) \in A$, set

$$
\mathbb{S}_{\bar{\alpha}}=\left\{p_{1}^{\alpha_{1}}, p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}, \cdots, \prod_{j=1}^{n} p_{j}^{\alpha_{j}}, \cdots\right\} \subseteq \mathbb{N} .
$$

Note that elements in the list need not be distinct. However, each $\mathbb{S}_{\bar{\alpha}}$ is infinite because $\bar{\alpha}$ contains infinitely many 1 -s. Given any $\bar{\alpha}, \bar{\beta} \in A$ with $\bar{\alpha} \neq \bar{\beta}$, let j denote the smallest integer such that $\alpha_{j} \neq \beta_{j}$. Suppose without loss of generality that $\alpha_{j}=1$ and $\beta_{j}=0$. This means every entry in $\mathbb{S}_{\bar{\alpha}}$ starting from the j-th member of its list is a multiple of p_{j}. None of the corresponding elements of $\mathbb{S}_{\bar{\beta}}$ has this property. Thus $\mathbb{S}_{\bar{\alpha}} \cap \mathbb{S}_{\bar{\beta}}$ is the finite set

$$
\left\{\prod_{k=1}^{\ell} p_{k}^{\alpha_{k}}: 1 \leq \ell \leq j-1\right\}
$$

