Solution for Q.1.

(a) \(I \subset \bigcup_{\alpha \in A} G_{\alpha} \).

Claim : \(X \) is non-empty.
\(\exists \alpha' \) such that \(a \in G_{\alpha'} \) and \(G_{\alpha'} \) is open. Thus, \(a \) is an interior point of \(G_{\alpha'} \) and \(a \in (c, d) \subset G_{\alpha'} \). Thus, if \(a < x < d \), then \(x \in X \). This proves \(X \) is non-empty.

Claim : \(\sup X = b \).

Suppose not, \(\sup(X) = x_o < b \) and \(x_0 \in [a, b] \subset \bigcup_{\alpha \in A} G_{\alpha} \). This implies, \(\exists \alpha'' \in A \) such that \(x_0 \in (c', d') \subset G_{\alpha''} \) and \(d' < b' \). Since \(c' < x_0 \), it is not a upper bound of \(X \). \(\exists x > c' \) such that \(x \in X \), i.e, \([a, x]\) has a finite subcover. Let \([a, x] \subset \bigcup_{\alpha \in B} G_{\alpha} \), where \(B \) is a finite subcover of \(A \). Then

\[[a, d') \subset \bigcup_{\alpha \in B} G_{\alpha} \cup (c', d'). \]

Choose \(x_0 < y < d' \), then \(y \in X \). This is a contradiction to the fact that \(\sup(X) = x_0 \).

Claim : \(b \in \sup(X) \).

\(b \) is an interior point in the open cover of \([a, b]\). Thus, \(\exists B \in A \) such that \(b \in I_B = (c_1, d_1) \subset G_B \). Since \(b = \sup(X) \), \(\exists x \in (c_1, b) \) such that \(x \in X \). This implies \(I_x \) has a finite subcover. Adding \((c_1, d_1)\) to that cover implies \(b \in X \). This proves \(I \) is compact.

(b) Claim : \(X \) is non-empty.

By (a), \(a_1 \times [a_2, b_2] \) is compact. Thus, every open cover has a finite subcover. Let \(a_1 \times [a_2, b_2] \subset \bigcup_{i=1}^{n} U_{\alpha_i} \). There exists \(r > 0 \) such that \((a_1, a_1 + r) \times [a_2, b_2] \subset \bigcup_{i=1}^{n} U_{\alpha_i} \).

Thus \(X \) is non-empty.

Claim : \(\sup(X) = b_1 \).

Similar to (a), suppose \(\sup(X) = x_0 \). Similar to (a), since \(x_0 \) is an interior point we can arrive at a contradiction as \(x_0 + r \) will also lie in \(X \). The same argument prove that \(b_1 \) lies in \(x \).

(c) We can use induction on \(k \). If \(k - 1 \) is compact, then the finite subcover of \(a_1 \times [a_2, b_2] \times [a_3, b_3] \times \ldots \times [a_k, b_k] \) is used to prove that \(x \) is non-empty.

Solution for Q.2.
(a) Choose $\epsilon = 1$, $\exists x_1, x_2, \ldots, x_n$ such that

$$A \subset \bigcup_{i=1}^{n} N_\epsilon(x_i)$$

Let $M = \sup_{i \leq i \leq N} |x_i|$. If $y \in A$, $\exists i$ such that $y \in N_\epsilon(x_i)$, then

$$|y| \leq |y - x_i| + |x_i| \leq M + 1.$$

Hence A is bounded. However the converse isn’t true. Take $M = \{x_n : x_n$ is bounded $\}$, i.e., M is the set of all bounded sequences. If $x = \{x_n\}$ and $y = \{y_n\}$. $d(x, y) = \sup_{n \in \mathbb{N}} |x_n - y_n|$. Choose $A = \{e^n : \text{All entries of } e^n \text{ are zero except } n^{th}\}$.

$$d(e^n, e^m) = 1 \text{ for all } n \neq m$$

and $|e^n| = 1$. If we choose $\epsilon = 1/2$, we conclude that A is not totally bounded but bounded.

(b) For all ϵ, $\bigcup_{x \in A} N_\epsilon(x)$ is an open cover of A. Since, A is compact, \exists a finite subcover, i.e., $\exists x_1, x_2, \ldots, x - n \in A$ such that $A \subset \bigcup_{i=1}^{n} N_\epsilon(x_i)$.

(c) Take $M = \mathbb{R}$ and $A = \mathbb{Q} \cap [0, 1]$. Clearly A is not compact. Since $[0, 1]$ is compact, it is totally bounded by (b). Thus for every ϵ, $\exists x_1, x_2, \ldots, x - n \in M$ such that

$$A \subset [0, 1] \subset \bigcup_{i=1}^{n} N_\epsilon(x_i).$$

Solution for Q.3. Take

$$\{0, 1, 0, \frac{1}{2}, \frac{2}{2}, 0, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, 0, \frac{1}{4}, \ldots\}$$

Let $r = p/q$. The subsequence $p/q, 2p/2q, 3p/3q, \ldots$ converges to r. If r is an irrational number, there exist a sequence of rationals x_n converging to r. Let $x_1 = p/q, x_2 = p_2/q_2, x_3 = p_3/q_3, \ldots$. The subsequence $r_1 = p_1/q_1, r_2 = q_1p_2/q_1q_2, r_3 = q_1q_2p_3/q_1q_2q_3$ converges to r.

Theorem 3.7 of the book says the set of all subsequential limits is closed.

(a) Solution for Q.4. It follows from the midterm question that if $x, y \in C$, then $\exists z$ such that $x < z < y$ and $z \notin C$. Thus, C is totally disconnected.