Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) Please staple your pages together when you submit your assignment.
- (iv) Do not forget to include your name and SID.
 - 1. Read section 1.22 of the textbook. Then answer the following questions.

1

(a) Let $p \ge 2$ be a fixed integer and 0 < x < 1, $x \in \mathbb{R}$. Show that there exists a sequence of integers $a_1, a_2, \dots, a_n \in \{0, 1, \dots, p-1\}$ with the following property. Given any $\epsilon > 0$, there exists a rational r of the form

$$r = \frac{a_1}{p} + \frac{a_2}{p^2} + \dots + \frac{a_n}{p^n}$$

such that $|x - r| < \epsilon$. The integers a_1, a_2, \cdots are called the *digits of the expansion of x* with respect to base p.

- (b) Suppose that x has a finite length expansion in base p, i.e., an expansion for which $a_n = 0$ for all but finitely many n. Prove that x has precisely two base p expansions.
- (c) If the base p expansion of x is not of finite length, show that it is unique.
- (d) Using your knowledge of decimal expansions, define a *repeating* base p expansion. Also describe when a base p expansion should be called *eventually repeating*.
- (e) Characterize the real numbers 0 < x < 1 that have repeating base p expansions, and those that have eventually repeating base p expansions.

Addendum Sept 24, 2018. Some students have requested clarification on the phrasing of Problem 1(a). Here is an alternate phrasing:

Let $p \ge 2$ be a fixed integer and 0 < x < 1, $x \in \mathbb{R}$. Show that there exists a sequence of integers a_1, a_2, \ldots in $\{0, 1, \cdots, p-1\}$ with the following property. For every $\epsilon > 0$, there exists a natural number N so that for every natural number $n \ge N$, if we define

$$r = \frac{a_1}{p} + \frac{a_2}{p^2} + \dots + \frac{a_n}{p^n},$$

then $|x - r| < \epsilon$. The integers a_1, a_2, \cdots are called the *digits of the expansion of x with* respect to base p.

- 2. Let $z, w \in \mathbb{C}$ with $\overline{z}w \neq 1$. Prove that:
 - (a)

$$\left|\frac{z-w}{1-\bar{z}w}\right| < 1 \quad \text{if } |z| < 1 \text{ and } |w| < 1,$$

$$\left|\frac{z-w}{1-\bar{z}w}\right| = 1 \quad \text{if } |z| = 1 \text{ or } |w| = 1.$$

Hint: You may find it useful to first prove that there is an $r \ge 0$ and $v \in \mathbb{C}$ with |v| = 1 such that z = rv, and use this to reduce to the case of z real and positive. For the first case, elementary calculus can be used to show that $(r - w)(r - \bar{w}) < (1 - rw)(1 - r\bar{w})$.

- 3. (a) Show that any infinite set has a countably infinite subset.
 - (b) Show that a set A is infinite if and only if it contains a proper subset that is of the same cardinality as itself.

(b)