Math 440/508 Quiz 8 Solution

Name: SID #:

1. Explain whether there exists an analytic branch of the logarithm on the domain

\[\Omega = \mathbb{C} \setminus \{ z = x + ix^2 : x \geq 0 \} . \]

If yes, give an explicit formula for the logarithm.

\[\text{(10 points)} \]

Solution. The domain \(\Omega \) is simply connected, so we know that there is an analytic branch of the logarithm. The issue is to define the function “\(z \mapsto \arg(z) \)” so that it is continuous on this domain.

The circle \(|z| = r\) intersects the curve \(\{ x + ix^2 : x \geq 0 \} \) at a unique point \(z_0(r) = x_0(r) + i(x_0(r))^2 \), where

\[x_0^2 + x_0^4 = r^2, \quad \text{i.e.} \quad x_0(r) = \frac{1}{\sqrt{2}} \sqrt{\sqrt{1 + 4r^2} - 1}. \]

Let \(\theta_0(r) \) denote the unique value of \(\arctan(x_0(r)) \) that lies in \([0, \frac{\pi}{2})\).

Given \(z = x + iy \in \Omega \) with \(|z| = r\), we define

\[\arg_\Omega(z) = \theta, \]

where \(\theta \) is the unique value of \(\arctan(y/x) \) lying in \((\theta_0(r), \theta_0(r) + 2\pi)\). We note that this defines a continuous function on \(\Omega \). An analytic branch of the complex logarithm on \(\Omega \) is then given by

\[\log_\Omega(z) = \log|z| + i\arg_\Omega(z). \]

\[\square \]