Chapter 1, Exercise 5

A set Ω is said to be pathwise connected if any two points in Ω can be joined by a (piecewise-smooth) curve contained entirely in Ω. The purpose of this exercise is to prove that an open set Ω is pathwise connected if and only if Ω is connected.

Part (a)

Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$ where Ω_1 and Ω_2 are disjoint, non-empty open sets. Choose two points $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let γ denote a curve in Ω joining w_1 to w_2. Consider a Parameterization $z : [0, 1] \to \Omega$ of this curve with $z(0) = w_1$ and $z(1) = w_2$, and let

\[t^* = \sup \{ t : z(s) \in \Omega_1 \text{ for all } 0 \leq s < t \}. \]

Arrive at a contradiction by considering the point $z(t^*)$

Solution

As suggested, we consider the point $z(t^*)$. We ask the question: which of Ω_1 and Ω_2 contains this point? Evidently, this point is not in Ω_1: if $z(t^*)$ is in Ω_1, then, because Ω_1 is open, there is an open ball B containing $z(t^*)$. Since z is continuous, it follows that $z^{-1}(B)$ is open as a subset of $[0, 1]$. Thus (assuming $t^* < 1$) $z^{-1}(\Omega_1)$ contains points to the right of t^*, which is impossible. If $t^* = 1$, then there is a sequence of points in Ω_1 that converges to $z(1) \in \Omega_2$, contradicting the assumption that Ω_2 is open.

If we assume instead that $z(t^*) \in \Omega_2$, we recognize that $z(t) \in \Omega_2$ if and only if $t > t^*$. Thus t^* is the infimum of all values of t such that $z(t) \in \Omega_2$, and we can use the same argument as in the previous paragraph to conclude $z(t^*) \notin \Omega_2$. Since $z(t^*) \in \Omega_1 \cup \Omega_2$, this is a contradiction.

0.1 Part b

Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω. Also, let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω. Prove that both Ω_1, Ω_2 are open, disjoint, and their union is Ω. Finally, since Ω_1 is nonempty (why?) conclude that $\Omega = \Omega_1$ as desired.

0.1.1 Solution

Evidently $\Omega_1 \cup \Omega_2 = \Omega$ and Ω_1 is disjoint from Ω_2. The only thing that remains to be shown is that both Ω_1 and Ω_2 are open.
Let \(w_1 \in \Omega_1 \). Because \(\Omega \) is open, \(\Omega \) contains an open ball \(B \) centered at \(w_1 \). It is obvious that if \(w^* \in B \), then there is a path \(z^* \) connecting \(w_1 \) and \(w^* \). Let \(z_1 \) be a curve joining \(w \) to \(w_1 \). Then consider the curve defined by

\[
z(t) = \begin{cases}
z(2t) & \text{if } 0 \leq t < 1/2 \\
z(2t - 1) & \text{if } 1/2 \leq t \leq 1
\end{cases}
\]

Then \(z \) is a continuous, piecewise smooth curve that connects \(w \) to \(w^* \). It follows that \(B \subset \Omega_1 \) and that \(\Omega_1 \) is open.

Now, let \(w_2 \in \Omega_2 \). Because \(\Omega \) is open \(\Omega \) contains an open ball \(B \) centered at \(w_2 \). Let \(w^* \in B \). If there were a curve \(z_2 \) that connected \(w \) to \(w^* \), then we could, as in the previous paragraph, find a curve connecting \(w \) to \(w_2 \) by concatenating the path from \(w \) to \(w^* \) and the path from \(w^* \) to \(w_2 \). Thus \(w_2 \in \Omega_1 \), which is a contradiction.

Thus \(\Omega \) can be written as \(\Omega_1 \cup \Omega_2 \) for disjoint open sets \(\Omega_1 \) and \(\Omega_2 \). Since \(\Omega \) is connected, either \(\Omega_1 = \Omega \) or \(\Omega_2 = \Omega \). But \(w \in \Omega_1 \), so \(\Omega_1 \) is nonempty and therefore \(\Omega_1 = \Omega \).

Chapter 1, Exercise 7

The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called Blaschke factors, will reappear in the various applications in later chapters.

Part a

Let \(z, w \) be two complex numbers such that \(\bar{z}w \neq 1 \). Prove that

\[
\left| \frac{w - z}{1 - \bar{w}z} \right| < 1 \text{ if } |z| < 1 \text{ and } |w| < 1
\]

and also that

\[
\left| \frac{w - z}{1 - \bar{w}z} \right| = 1 \text{ if } |z| = 1 \text{ or } |w| = 1.
\]

[Hint: Why can we assume that \(z \) is real? It then suffices to prove that

\[
(r - w)(r - \bar{w}) \leq (1 - rw)(1 - r\bar{w})
\]

with equality for appropriate \(r \) and \(|w| \).]
Solution

Write $z = re^{i\theta}$. Then

$$\frac{|w - z|}{1 - \bar{w}z} = \frac{|w - re^{i\theta}|}{1 - \bar{w}re^{i\theta}} \geq \frac{|e^{i\theta} \bar{w}e^{-i\theta} - r|}{1 - \bar{w}e^{-i\theta}r} = \frac{|we^{-i\theta} - r|}{1 - \bar{w}e^{-i\theta}r}.$$

Letting $w^* = we^{-i\theta}$ this becomes

$$\frac{|w^* - r|}{1 - w^*r},$$

so it is enough to consider the case in which $z = r$ is a real number. Note further that replacing w by \bar{w} is equivalent to taking the complex conjugate of the entire fraction. So it is enough to show

$$\left(\frac{w - r}{1 - wr}\right)\left(\frac{\bar{w} - r}{1 - \bar{w}r}\right) \leq 1$$

or equivalently that

$$(w - r)(\bar{w} - r) \leq (1 - wr)(1 - \bar{w}r).$$

Suppose first that w and r both have absolute value less than 1. Let $w = se^{i\theta}$. Pull out $e^{i\theta}$ and $e^{-i\theta}$ from the first and second factor on the left turns the left side into $(s - r)^2$. Doing the same on the right side turns the expression to $(1 - sr)^2$. Since $s, r < 1$, we have that $sr < \min(|s|, |r|) \leq \max(|s|, |r|) < 1$ so $(s - r)^2$ is clearly smaller than $(1 - sr)^2$ and we are done.

If s is instead equal to 1, then $s - r = 1 - r = 1 - sr$, and if $r = 1$, then $s - r = s - 1 = -(1 - s) = -(1 - sr)$, so we have equality in these cases.

Part b

Prove that for a fixed w in the unit disc \mathbb{D}, the mapping

$$F : z \mapsto \frac{w - z}{1 - wz}$$

satisfies the following conditions:

1. F maps the unit disc to itself (that is $F : \mathbb{D} \to \mathbb{D}$), and is holomorphic
2. F interchanges 0 and w, namely $F(0) = w$ and $F(w) = 0$.
3. $|F(z)| = 1$ if $|z| = 1$.
4. $F : \mathbb{D} \to \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]
Solution

(i) and (iii) directly follow from part (a) of the problem except for the holomorphicity, which is clear except when $z\bar{w} = 1$. This can only happen if $|w| = 1$ and $z = \frac{1}{w}$. It is seen that F has a removable singularity at $z = \frac{1}{w}$ with value w. (ii) follows by plugging in: the numerator is clearly 0 when $z = w$, and plugging in $z = 0$ makes the numerator equal to w and the denominator equal to 1. All that remains to be seen is that F is bijective on \mathbb{D}. Consider $F \circ F(z)$. This is

$$F \circ F(z) = \frac{w - \frac{w - z}{1 - w\bar{z}}}{1 - \frac{w - z}{1 - w\bar{z}}}.$$

We simplify this:

$$= \frac{w - \frac{w - z}{1 - w\bar{z}}}{1 - \frac{w - z}{1 - w\bar{z}}} = \frac{w(1 - \bar{w}z) - (w - z)}{q - \bar{w}z - \bar{w}(w - z)} = \frac{w - |w|^2z - w + z}{1 - \bar{w}z - |w|^2 + \bar{w}z} = \frac{z(1 - |w|^2)}{1 - |w|^2} = z$$

so the function F is an involution and therefore bijective on \mathbb{D}.

Chapter 1, Exercise 13

Suppose that f is holomorphic in an open set Ω. Prove that in any one of the following cases:

1. Re(f) is constant;
2. Im(f) is constant;
3. $|f|$ is constant; one can conclude that f is constant.

Solution

Suppose that Re(f) is constant. Then $f(x, y) = a + iv(x, y)$ for $z = x + iy$. Then we consider the PDEs from the Cauchy-Riemann equations:

$$0 = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}.$$
So \(\frac{\partial v}{\partial y} \) is zero, and thus \(v \) depends only on \(x \) and

\[
0 = \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
\]

so \(\frac{\partial v}{\partial x} \) is zero and thus \(v \) depends only on \(y \). Since \(v \) cannot depend on either \(x \) or \(y \), it follows that \(v \) is constant.

The same argument works if \(\text{Im}(f) \) is constant. Alternatively, if \(\text{Im}(f) \) is constant, then \(\text{Re}(if) \) is constant and so \(if \), and thus \(f \), is constant.

Now suppose \(|f| \) is constant. Writing \(f(z) = u(x, y) + iv(x, y) \) for \(z = x + iy \), we then have that \(u(x, y)^2 + v(x, y)^2 \) is constant. In particular, this implies that \(\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x} \) and that \(\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y} \) Thus we can again use the Cauchy-Riemann equations:

\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -\frac{\partial v}{\partial x}
\]

and

\[
\frac{\partial u}{\partial x} = -\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}
\]

So we get \(\frac{\partial u}{\partial x} \) is equal to both \(\frac{\partial v}{\partial x} \) and \(-\frac{\partial v}{\partial x} \), showing that both are equal to zero, and by the same logic as before, \(f \) is constant.