Solution of problem 1.2.3, pag. 24. As to a, there exists $A_1 \in \mathcal{M}$ such that the restriction of the collection of all intersections of the sets of \mathcal{M} with A_1 (which is a σ-algebra; let’s denote it by $A_1^c \cap \mathcal{M}$) is still infinite. Indeed, if no such set exists, then we can choose a set $A \in \mathcal{M}$ with $A \neq \emptyset$ and $A^c \cap \mathcal{M}$ finite. But even $A \cap \mathcal{M}$ is finite (otherwise it could have been $A_1 = A^c$). Therefore \mathcal{M} is finite, which is absurd. Now we consider the σ-algebra $A_1^c \cap \mathcal{M}$ and prove, by the same argument, the existence of a set $A_2 \in A_1^c \cap \mathcal{M}$ such that $A_2^c \cap (A_1^c \cap \mathcal{M})$ is infinite. Then we have just to iterate the previous argument.

As to b, if (X, \mathcal{M}) is not finite and we suppose that $\mathcal{M} = \{ E_k \}_{k \in \mathbb{N}}$, for any $x \in X$ we have that the set:

$$E_x := \bigcap_{E_k \supseteq x} E_k$$

is still in \mathcal{M}. It’s easy to understand that E_x is the smallest set of \mathcal{M} to contain x and the collection of all E_x’s is a partition of X. Indeed, let’s assume $E_x \cap E_y \neq \emptyset$. If $x \notin E_y$, then $E_x \setminus E_y \in \mathcal{M}$ and is smaller than E_x, which is a contradiction with what E_x is. Therefore, $x \in E_y$ and, by the same argument, $y \in E_x$. But then, by the definition of E_x and E_y, we get $E_x \subseteq E_y$ and $E_y \supseteq E_x$; that is $E_x = E_y$. Now, each set E in \mathcal{M} can be written as the union of such sets:

$$E_k := \bigcup_{x \in E} E_x.$$ \hspace{1cm} (2)

Therefore, the partition of E_x’s cannot be finite, otherwise \mathcal{M} would be finite too. As consequence, we can form all the sets in \mathcal{M} by taking all the possible (disjoint) unions of sets of the partition. This means that $\text{card} (\mathcal{M})$ is equal to $\text{card} (\mathcal{P}(\mathcal{M}))$. But the latter is uncountable and this is a contradiction.

Solution of problem 1.2.4, pag. 24 if \mathcal{A} is a σ-algebra, then it’s an algebra and it’s closed under countable increasing unions. On the other hand, if \mathcal{A} is an algebra and it’s closed under countable increasing unions, let A_k be a sequence of sets in \mathcal{A}. We have to show that $\cup_{k=1}^{N} A_k$ is in \mathcal{A}. But if we set $B_N := \cup_{k=1}^{N} A_k$, we have that $B_N \subset B_{N+1}$, $B_N \in \mathcal{A}$ for all N and:

$$\cup_{k=1}^{\infty} B_N = \cup_{k=1}^{+\infty} A_k.$$ \hspace{1cm} (3)

Therefore $\cup_{k=1}^{+\infty} A_k \in \mathcal{A}$ and \mathcal{A} is a σ-algebra.
Solution of problem 1.2.5, pag. 24 By definition, \(M \) is the smallest \(\sigma \)-algebra generated by \(E \). Let \(\mathcal{P}_\mathcal{N}(E) \) the collection of all countable subfamilies of \(E \). Then we have to show that:

\[
\sigma(E) = \bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}).
\]

We have that if \(A_k \in \bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}) \) for all \(k \), then \(A_k \) must belong to some \(\sigma(\mathcal{N}) \), say \(\sigma(\mathcal{N}_k) \). Then we have:

\[
\bigcup_{k \in \mathbb{N}} A_k \subset \bigcup_{k \in \mathbb{N}} \sigma(\mathcal{N}) \subset \bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}).
\]

Moreover, if if \(A \in \bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}) \), \(A \) must belong to some \(\sigma(\mathcal{N}) \), say \(\sigma(\mathcal{N}_k) \). Therefore \(A^c \in \sigma(\mathcal{N}_k) \). This shows that \(\bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}) \) is a \(\sigma \)-algebra. Now we show that

\[
\sigma(E) = \bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}).
\]

If \(A \in M = \sigma(E) \), \(A \) must belong to some \(\mathcal{N} \in \mathcal{P}_\mathcal{N}(E) \), say \(\mathcal{N} \). But, by the definition of \(\sigma(E) \), we have:

\[
\sigma(E) \subseteq \bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}).
\]

On the other hand, if \(\mathcal{N} \in \mathcal{P}_\mathcal{N}(E) \), then \(\sigma(\mathcal{N}) \subseteq \sigma(E) \) and

\[
\bigcup_{\mathcal{N} \in \mathcal{P}_\mathcal{N}(E)} \sigma(\mathcal{N}) \subseteq \sigma(E)
\]

Solution of problem 1.3.11, pag. 27 If \(\mu \) is a measure, then the rest is obvious (see Theo. 1.8). Conversely, let \(\mu \) be a f.a.m. that is continuous from below. If \(A_k \) is a seq. of disjoint \(\mu \)-measurable sets, we have:

\[
\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{N=1}^{+\infty} \bigcup_{k=1}^{N} A_k\right).
\]

Now we use the property of continuity from below:

\[
\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{N=1}^{+\infty} \bigcup_{k=1}^{N} A_k\right) = \lim_{N \to +\infty} \mu\left(\bigcup_{k=1}^{N} A_k\right) =
\]
\[
\lim_{N \to +\infty} \sum_{k=1}^{N} \mu(A_k) = \sum_{k=1}^{+\infty} \mu(A_k). \quad (10)
\]

Therefore \(\mu \) is a measure.

Now, again, if \(\mu \) is a measure, then the rest is obvious (see Theo. 1.8). Conversely, we suppose \(\mu(X) < +\infty \) and let \(\mu \) be a f.a.m. that is continuous from above. Then, If \(A_k \) is a seq. of disjoint \(\mu \)-measurable sets, we have:

\[
\bigcup_{k=1}^{\infty} A_k = X \setminus \bigcap_{k=1}^{\infty} A_k^c = X \setminus \bigcap_{N=1}^{\infty} \bigcap_{k=1}^{N} A_k^c. \quad (11)
\]

But \(\bigcap_{k=1}^{N} A_k^c \) is a decreasing seq., therefore:

\[
\mu(X) - \mu \left(\bigcap_{N=1}^{\infty} \bigcap_{k=1}^{N} A_k^c \right) = \mu(X) - \lim_{N \to +\infty} \mu \left(\bigcap_{k=1}^{N} A_k^c \right) = \mu(X) - \lim_{N \to +\infty} \mu \left(X \setminus \bigcup_{k=1}^{N} A_k^c \right) = \mu(X) - \mu(X) + \lim_{N \to +\infty} \sum_{k=1}^{+\infty} \mu(A_k) = \sum_{k=1}^{+\infty} \mu(A_k). \quad (12)
\]

Therefore \(\mu \) is a measure.

Solution of problem 1.3.11, pag. 27 By hypothesis, there exists a seq. \(E_k \) of \(\mu \)-measurable sets such that \(\bigcup_{k=1}^{N} E_k = X, \mu(E_k) < +\infty \). It’s easy to see that we can suppose this seq. to be increasing. Now, if \(E \) is a \(\mu \)-measurable set with \(\mu(E) = +\infty \), let’ consider the seq. \(E_k \cap E \). We have:

\[
\bigcup_{k=1}^{+\infty} E \cap E_k = E \Rightarrow +\infty = \lim_{N \to +\infty} \mu(E \cap E_k). \quad (13)
\]

Therefore ther must be an index \(k_0 \) such that \(\mu(E \cap E_{k_0}) > 0 \). But \(\mu(E \cap E_{k_0}) \leq \mu(E_{k_0}) < +\infty \). Therefore \(\mu \) is semi-finite.