Review Sheet 1

1. For what values of the number \(r \) is the function
 \[
 f(x, y, z) = \begin{cases}
 \frac{(x+y+z)^r}{x^2+y^2+z^2} & \text{if } (x, y, z) \neq (0, 0, 0) \\
 0 & \text{if } (x, y, z) = 0
 \end{cases}
 \]
 continuous on \(\mathbb{R}^3 \)?
 (Answer: \(r > 2 \))

2. Among all planes that are tangent to the surface \(xy^2z^2 = 1 \), find the ones that are farthest from the origin.
 (Answer: \((2^{2/5})x \pm (2^{9/10})y \pm (2^{9/10})z = 5 \))

3. Evaluate the integral
 \[
 \int_0^1 \int_0^1 e^{\max(x^2,y^2)} \, dy \, dx,
 \]
 where \(\max\{x^2, y^2\} \) means the larger of the two numbers \(x^2 \) and \(y^2 \).
 (Answer: \(e - 1 \))

4. If \(f : \mathbb{R} \to \mathbb{R} \) is continuous, show that
 \[
 \int_0^x \int_0^y f(t) \, dt \, dz = \frac{1}{2} \int_0^x (x-t)^2 f(t) \, dt.
 \]

5. Recall that a function \(f \) is harmonic if \(\nabla^2 f = 0 \).
 (a) Show that if \(f \) is a harmonic function in \(\mathbb{R}^2 \) then the line integral
 \[
 \int f_y \, dy - f_x \, dx
 \]
 is independent of path.
 (b) Show that for any harmonic function \(f \) in \(\mathbb{R}^2 \), \(\langle f_x, f_y \rangle \) and \(\langle f_y, -f_x \rangle \) form a pair of mutually orthogonal (i.e., perpendicular to each other) conservative vector fields.

6. (a) Sketch the curve \(C \) with parametric equations
 \[
 x = \cos t, \quad y = \sin t, \quad z = \sin t, \quad 0 \leq t \leq 2\pi.
 \]
 (b) Find \(\int_C 2xe^{2y} \, dx + (2x^2e^{2y} + 2y \cot z) \, dy - y^2 \csc^2 z \, dz \).
 (Answer: (a) an ellipse, (b) 0)

7. Let
 \[
 \mathbf{F}(x, y) = \frac{1}{x^2 + y^2} \left[(2x^3 + 2xy^2 - 2y)i + (2y^3 + 2x^2y + 2x)j \right].

 Evaluate \(\oint_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is an arbitrary positively oriented simple closed curve containing the origin in its interior.
 (Answer: \(4\pi \))

8. Find the positively oriented simple closed curve \(C \) for which the value of the line integral
 \[
 \int_C (y^3 - y) \, dx - 2x^3 \, dy
 \]
 (Answer: \(\frac{3}{2} \))
9. (a) As part of the lecture on div and curl, we reformulated Green’s theorem as follows:

\begin{equation}
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, dA,
\end{equation}

where C and D satisfy the hypotheses of Green’s theorem. This led to a discussion prompted by two questions of Craig and Evan, about the significance of \mathbf{k} in this formula, and possible generalizations of this result for curves C not necessarily lying in the (x, y) plane. We are now in a position to address this question in its entirety.

Let C be a simple closed curve lying on a (not necessarily horizontal) plane P, and enclosing a domain D. Let \mathbf{F} be a vector field in \mathbb{R}^3 with continuous partial derivatives on D. Find an identity similar to (1) that relates the line integral \(\oint_C \mathbf{F} \cdot d\mathbf{r} \) with an integral over the domain D. What has $k \, dA$ been replaced by?

(b) Let C be a simple positively oriented closed curve lying in a plane with unit normal vector $\mathbf{n} = \langle a, b, c \rangle$. Show that the plane area enclosed by C is

\[
\frac{1}{2} \oint_C (bz - cy)\,dx + (cx - az)\,dy + (ay - bx)\,dz.
\]