12. $\mathbf{F}(x, y)=\left\langle y^{2} \cos x, x^{2}+2 y \sin x\right\rangle$ and the region D enclosed by C is given by $\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 3 x\}$.
C is traversed clockwise, so $-C$ gives the positive orientation.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =-\int_{-C}\left(y^{2} \cos x\right) d x+\left(x^{2}+2 y \sin x\right) d y=-\iint_{D}\left[\frac{\partial}{\partial x}\left(x^{2}+2 y \sin x\right)-\frac{\partial}{\partial y}\left(y^{2} \cos x\right)\right] d A \\
& =-\iint_{D}(2 x+2 y \cos x-2 y \cos x) d A=-\int_{0}^{2} \int_{0}^{3 x} 2 x d y d x \\
& \left.=-\int_{0}^{2} 2 x[y]_{y=0}^{y=3 x} d x=-\int_{0}^{2} 6 x^{2} d x=-2 x^{3}\right]_{0}^{2}=-16
\end{aligned}
$$

19. Let C_{1} be the arch of the cycloid from $(0,0)$ to $(2 \pi, 0)$, which corresponds to $0 \leq t \leq 2 \pi$, and let C_{2} be the segment from $(2 \pi, 0)$ to $(0,0)$, so C_{2} is given by $x=2 \pi-t, y=0,0 \leq t \leq 2 \pi$. Then $C=C_{1} \cup C_{2}$ is traversed clockwise, so $-C$ is oriented positively. Thus $-C$ encloses the area under one arch of the cycloid and from (5) we have

$$
\begin{aligned}
A=-\oint_{-C} y d x & =\int_{C_{1}} y d x+\int_{C_{2}} y d x=\int_{0}^{2 \pi}(1-\cos t)(1-\cos t) d t+\int_{0}^{2 \pi} 0(-d t) \\
& =\int_{0}^{2 \pi}\left(1-2 \cos t+\cos ^{2} t\right) d t+0=\left[t-2 \sin t+\frac{1}{2} t+\frac{1}{4} \sin 2 t\right]_{0}^{2 \pi}=3 \pi
\end{aligned}
$$

22. By Green's Theorem, $\frac{1}{2 A} \oint_{C} x^{2} d y=\frac{1}{2 A} \iint_{D} 2 x d A=\frac{1}{A} \iint_{D} x d A=\bar{x}$ and $-\frac{1}{2 A} \oint_{C} y^{2} d x=-\frac{1}{2 A} \iint_{D}(-2 y) d A=\frac{1}{A} \iint_{D} y d A=\bar{y}$.
23. $\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ e^{z} & 1 & x e^{z}\end{array}\right|=(0-0) \mathbf{i}-\left(e^{z}-e^{z}\right) \mathbf{j}+(0-0) \mathbf{k}=\mathbf{0}$ and \mathbf{F} is defined on all of \mathbb{R}^{3} with component functions that have continuous partial deriatives, so \mathbf{F} is conservative. Thus there exists a function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y, z)=e^{z}$ implies $f(x, y, z)=x e^{z}+g(y, z) \Rightarrow f_{y}(x, y, z)=g_{y}(y, z)$. But $f_{y}(x, y, z)=1$, so $g(y, z)=y+h(z)$ and $f(x, y, z)=x e^{z}+y+h(z)$. Thus $f_{z}(x, y, z)=x e^{z}+h^{\prime}(z)$ but $f z(x, y, z)=x e^{z}$, so $h(z)=K$, a constant. Hence a potential function for \mathbf{F} is $f(x, y, z)=x e^{z}+y+K$.
24. No. Assume there is such a \mathbf{G}. Then $\operatorname{div}(\operatorname{curl} \mathbf{G})=y z-2 y z+2 y z=y z \neq 0$ which contradicts Theorem 11 .
25. $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \Rightarrow r=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$, so

$$
\mathbf{F}=\frac{\mathbf{r}}{r^{p}}=\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{p / 2}} \mathbf{i}+\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{p / 2}} \mathbf{j}+\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{p / 2}} \mathbf{k}
$$

Then $\frac{\partial}{\partial x} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{p / 2}}=\frac{\left(x^{2}+y^{2}+z^{2}\right)-p x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{1+p / 2}}=\frac{r^{2}-p x^{2}}{r^{p+2}}$. Similarly,

$$
\begin{aligned}
& \frac{\partial}{\partial y} \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{p / 2}}=\frac{r^{2}-p y^{2}}{r^{p+2}} \text { and } \frac{\partial}{\partial z} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{p / 2}}=\frac{r^{2}-p z^{2}}{r^{p+2}} . \text { Thus } \\
& \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{r^{2}-p x^{2}}{r^{p+2}}+\frac{r^{2}-p y^{2}}{r^{p+2}}+\frac{r^{2}-p z^{2}}{r^{p+2}}=\frac{3 r^{2}-p x^{2}-p y^{2}-p z^{2}}{r^{p+2}} \\
& \\
& =\frac{3 r^{2}-p\left(x^{2}+y^{2}+z^{2}\right)}{r^{p+2}}=\frac{3 r^{2}-p r^{2}}{r^{p+2}}=\frac{3-p}{r^{p}}
\end{aligned}
$$

Consequently, if $p=3$ we have $\operatorname{div} \mathbf{F}=0$.

Page 1

33. By (13), $\oint_{C} f(\nabla g) \cdot \mathbf{n} d s=\iint_{D} \operatorname{div}(f \nabla g) d A=\iint_{D}[f \operatorname{div}(\nabla g)+\nabla g \cdot \nabla f] d A$ by Exercise 25 . But $\operatorname{div}(\nabla g)=\nabla^{2} g$.

Hence $\iint_{D} f \nabla^{2} g d A=\oint_{C} f(\nabla g) \cdot \mathbf{n} d s-\iint_{D} \nabla g \cdot \nabla f d A$.
4. $\mathbf{r}(u, v)=2 \sin u \mathbf{i}+3 \cos u \mathbf{j}+v \mathbf{k}$, so the corresponding parametric equations for the surface are $x=2 \sin u, y=3 \cos u$, $z=v$. For any point (x, y, z) on the surface, we have $(x / 2)^{2}+(y / 3)^{2}=\sin ^{2} u+\cos ^{2} u=1$, so cross-sections parallel to the $y z$-plane are all ellipses. Since $z=v$ with $0 \leq v \leq 2$, the surface is the portion of the elliptical cylinder $x^{2} / 4+y^{2} / 9=1$ for $0 \leq z \leq 2$.
6. $\mathbf{r}(s, t)=s \sin 2 t \mathbf{i}+s^{2} \mathbf{j}+s \cos 2 t \mathbf{k}$, so the corresponding parametric equations for the surface are $x=s \sin 2 t, y=s^{2}$, $z=s \cos 2 t$. For any point (x, y, z) on the surface, we have $x^{2}+z^{2}=s^{2} \sin ^{2} 2 t+s^{2} \cos ^{2} 2 t=s^{2}=y$. Since no restrictions are placed on the parameters, the surface is $y=x^{2}+z^{2}$, which we recognize as a circular paraboloid whose axis is the y-axis.
42. $z=f(x, y)=1+3 x+2 y^{2}$ with $0 \leq x \leq 2 y, 0 \leq y \leq 1$. Thus, by Formula 9 ,

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+3^{2}+(4 y)^{2}} d A=\int_{0}^{1} \int_{0}^{2 y} \sqrt{10+16 y^{2}} d x d y=\int_{0}^{1} 2 y \sqrt{10+16 y^{2}} d y \\
& \left.=\frac{1}{16} \cdot \frac{2}{3}\left(10+16 y^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{24}\left(26^{3 / 2}-10^{3 / 2}\right)
\end{aligned}
$$

44. A parametric representation of the surface is $x=y^{2}+z^{2}, y=y, z=z$ with $0 \leq y^{2}+z^{2} \leq 9$.

Hence $\mathbf{r}_{y} \times \mathbf{r}_{z}=(2 y \mathbf{i}+\mathbf{j}) \times(2 z \mathbf{i}+\mathbf{k})=\mathbf{i}-2 y \mathbf{j}-2 z \mathbf{k}$.
Note: In general, if $x=f(y, z)$ then $\mathbf{r}_{y} \times \mathbf{r}_{z}=\mathbf{i}-\frac{\partial f}{\partial y} \mathbf{j}-\frac{\partial f}{\partial z} \mathbf{k}$, and $A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial f}{\partial y}\right)^{2}+\left(\frac{\partial f}{\partial z}\right)^{2}} d A$. Then

$$
\begin{aligned}
A(S) & =\iint_{0 \leq y^{2}+z^{2} \leq 9} \sqrt{1+4 y^{2}+4 z^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{3} r \sqrt{1+4 r^{2}} d r=2 \pi\left[\frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right]_{0}^{3}=\frac{\pi}{6}(37 \sqrt{37}-1)
\end{aligned}
$$

