4. $\mathbf{F}(x, y)=(x-y) \mathbf{i}+x \mathbf{j}$

The length of the vector $(x-y) \mathbf{i}+x \mathbf{j}$ is
$\sqrt{(x-y)^{2}+x^{2}}$. Vectors along the line $y=x$ are vertical.

26. $f(x, y)=\sqrt{x^{2}+y^{2}} \Rightarrow$

$$
\begin{aligned}
\nabla f(x, y) & =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 x) \mathbf{i}+\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 y) \mathbf{j} \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \mathbf{j} \text { or } \frac{1}{\sqrt{x^{2}+y^{2}}}(x \mathbf{i}+y \mathbf{j}) .
\end{aligned}
$$

$\nabla f(x, y)$ is not defined at the origin, but elsewhere all vectors have length 1 and point away from the origin.

34. At $t=1$ the particle is at $(1,3)$ so its velocity is $\mathbf{F}(1,3)=\langle 1,-1\rangle$. After 0.05 units of time, the particle's change in location should be approximately $0.05 \mathbf{F}(1,3)=0.05\langle 1,-1\rangle=\langle 0.05,-0.05\rangle$, so the particle should be approximately at the point $(1.05,2.95)$.
8.

$$
C=C_{1}+C_{2}
$$

On $C_{1}: x=\cos t \Rightarrow d x=-\sin t d t, y=\sin t \Rightarrow d y=\cos t d t, \quad 0 \leq t \leq \pi$.
On $C_{2}: x=-1-t \Rightarrow d x=-d t, y=3 t \quad \Rightarrow \quad d y=3 d t, \quad 0 \leq t \leq 1$.

Then

$$
\begin{aligned}
\int_{C} \sin x d x+\cos y d y & =\int_{C_{1}} \sin x d x+\cos y d y+\int_{C_{2}} \sin x d x+\cos y d y \\
& =\int_{0}^{\pi} \sin (\cos t)(-\sin t d t)+\cos (\sin t) \cos t d t+\int_{0}^{1} \sin (-1-t)(-d t)+\cos (3 t)(3 d t) \\
& =[-\cos (\cos t)+\sin (\sin t)]_{0}^{\pi}+[-\cos (-1-t)+\sin (3 t)]_{0}^{1} \\
& =-\cos (\cos \pi)+\sin (\sin \pi)+\cos (\cos 0)-\sin (\sin 0)-\cos (-2)+\sin (3)+\cos (-1)-\sin (0) \\
& =-\cos (-1)+\sin 0+\cos (1)-\sin 0-\cos (-2)+\sin 3+\cos (-1) \\
& =-\cos 1+\cos 1-\cos 2+\sin 3+\cos 1=\cos 1-\cos 2+\sin 3
\end{aligned}
$$

where we have used the identity $\cos (-\theta)=\cos \theta$.
16.

$$
\begin{aligned}
& \text { On } C_{1}: x=t \Rightarrow d x=d t, y=2 t \Rightarrow \\
& \quad d y=2 d t, z=-t \Rightarrow d z=-d t, 0 \leq t \leq 1 \\
& \text { On } C_{2}:=1+2 t \Rightarrow d x=2 d t, y=2 \Rightarrow \\
& \quad d y=0 d t, z=-1+t \Rightarrow d z=d t, 0 \leq t \leq 1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{C} x^{2} d x+y^{2} d y+z^{2} d z & =\int_{C_{1}} x^{2} d x+y^{2} d y+z^{2} d z+\int_{C_{2}} x^{2} d x+y^{2} d y+z^{2} d z \\
& =\int_{0}^{1} t^{2} d t+(2 t)^{2} \cdot 2 d t+(-t)^{2}(-d t)+\int_{0}^{1}(1+2 t)^{2} \cdot 2 d t+2^{2} \cdot 0 d t+(-1+t)^{2} d t \\
& =\int_{0}^{1} 8 t^{2} d t+\int_{0}^{1}\left(9 t^{2}+6 t+3\right) d t=\left[\frac{8}{3} t^{3}\right]_{0}^{1}+\left[3 t^{3}+3 t^{2}+3 t\right]_{0}^{1}=\frac{35}{3}
\end{aligned}
$$

40. $x=x, \quad y=x^{2}, \quad-1 \leq x \leq 2$,
$W=\int_{-1}^{2}\left\langle x \sin x^{2}, x^{2}\right\rangle \cdot\langle 1,2 x\rangle d x=\int_{-1}^{2}\left(x \sin x^{2}+2 x^{3}\right) d x=\left[-\frac{1}{2} \cos x^{2}+\frac{1}{2} x^{4}\right]_{-1}^{2}=\frac{1}{2}(15+\cos 1-\cos 4)$.
41. Consider the base of the fence in the $x y$-plane, centered at the origin, with the height given by $z=h(x, y)$. The fence can be graphed using the parametric equations $x=10 \cos u, y=10 \sin u$,

$$
\begin{aligned}
z & =v\left[4+0.01\left((10 \cos u)^{2}-(10 \sin u)^{2}\right)\right]=v\left(4+\cos ^{2} u-\sin ^{2} u\right) \\
& =v(4+\cos 2 u), 0 \leq u \leq 2 \pi, 0 \leq v \leq 1
\end{aligned}
$$

The area of the fence is $\int_{C} h(x, y) d s$ where C, the base of the fence, is given by $x=10 \cos t, y=10 \sin t, 0 \leq t \leq 2 \pi$. Then

$$
\begin{aligned}
\int_{C} h(x, y) d s & =\int_{0}^{2 \pi}\left[4+0.01\left((10 \cos t)^{2}-(10 \sin t)^{2}\right)\right] \sqrt{(-10 \sin t)^{2}+(10 \cos t)^{2}} d t \\
& =\int_{0}^{2 \pi}(4+\cos 2 t) \sqrt{100} d t=10\left[4 t+\frac{1}{2} \sin 2 t\right]_{0}^{2 \pi}=10(8 \pi)=80 \pi \mathrm{~m}^{2}
\end{aligned}
$$

If we paint both sides of the fence, the total surface area to cover is $160 \pi \mathrm{~m}^{2}$, and since 1 L of paint covers $100 \mathrm{~m}^{2}$, we require $\frac{160 \pi}{100}=1.6 \pi \approx 5.03 \mathrm{~L}$ of paint.
48. Use the orientation pictured in the figure. Then since \mathbf{B} is tangent to any circle that lies in the plane perpendicular to the wire, $\mathbf{B}=|\mathbf{B}| \mathbf{T}$ where \mathbf{T} is the unit tangent to the circle $C: x=r \cos \theta, y=r \sin \theta$. Thus $\mathbf{B}=|\mathbf{B}|\langle-\sin \theta, \cos \theta\rangle$. Then $\int_{C} \mathbf{B} \cdot d \mathbf{r}=\int_{0}^{2 \pi}|\mathbf{B}|\langle-\sin \theta, \cos \theta\rangle \cdot\langle-r \sin \theta, r \cos \theta\rangle d \theta=\int_{0}^{2 \pi}|\mathbf{B}| r d \theta=2 \pi r|\mathbf{B}|$. (Note that $|\mathbf{B}|$ here is the magnitude of the field at a distance r from the wire's center.) But by Ampere's Law $\int_{C} \mathbf{B} \cdot d \mathbf{r}=\mu_{0} I$. Hence $|\mathbf{B}|=\mu_{0} I /(2 \pi r)$.
16. (a) $f_{x}(x, y, z)=2 x z+y^{2}$ implies $f(x, y, z)=x^{2} z+x y^{2}+g(y, z)$ and so $f_{y}(x, y, z)=2 x y+g_{y}(y, z)$. But $f_{y}(x, y, z)=2 x y$ so $g_{y}(y, z)=0 \quad \Rightarrow \quad g(y, z)=h(z)$. Thus $f(x, y, z)=x^{2} z+x y^{2}+h(z)$ and $f_{z}(x, y, z)=x^{2}+h^{\prime}(z)$. But $f_{z}(x, y, z)=x^{2}+3 z^{2}$, so $h^{\prime}(z)=3 z^{2} \Rightarrow h(z)=z^{3}+K$. Hence $f(x, y, z)=x^{2} z+x y^{2}+z^{3}$ (taking $K=0$).
(b) $t=0$ corresponds to the point $(0,1,-1)$ and $t=1$ corresponds to $(1,2,1)$, so
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,2,1)-f(0,1,-1)=6-(-1)=7$.
26. $\nabla f(x, y)=\cos (x-2 y) \mathbf{i}-2 \cos (x-2 y) \mathbf{j}$
(a) We use Theorem 2: $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))$ where C_{1} starts at $t=a$ and ends at $t=b$. So because $f(0,0)=\sin 0=0$ and $f(\pi, \pi)=\sin (\pi-2 \pi)=0$, one possible curve C_{1} is the straight line from (0,0$)$ to (π, π); that is, $\mathbf{r}(t)=\pi t \mathbf{i}+\pi t \mathbf{j}, \quad \mathbf{0} \leq t \leq 1$.
(b) From (a), $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))$. So because $f(0,0)=\sin 0=0$ and $f\left(\frac{\pi}{2}, 0\right)=1$, one possible curve C_{2} is $\mathbf{r}(t)=\frac{\pi}{2} t \mathbf{i}, \mathbf{0} \leq t \leq 1$, the straight line from $(\mathbf{0}, \mathbf{0})$ to $\left(\frac{\pi}{2}, 0\right)$.
28. Here $\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+x y z \mathbf{k}$. Then using the notation of Exercise 27, $\partial P / \partial z=0$ while $\partial R / \partial x=y z$. Since these aren't equal, \mathbf{F} is not conservative. Thus by Theorem 4, the line integral of \mathbf{F} is not independent of path.

Page 3
32. $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right.$ or $\left.4 \leq x^{2}+y^{2} \leq 9\right\}=$ the points on or inside the circle $x^{2}+y^{2}=1$, together with the points on or between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
(a) D is not open because, for instance, no disk with center $(0,2)$ lies entirely within D.
(b) D is not connected because, for example, $(0,0)$ and $(0,2.5)$ lie in D but cannot be joined by a path that lies entirely in D.
(c) D is not simply-connected because, for example, $x^{2}+y^{2}=9$ is a simple closed curve in D but encloses points that are not in D.

