4. (a) The subrectangles are shown in the figure.

The surface is the graph of $f(x, y)=x+2 y^{2}$ and $\Delta A=2$, so we estimate

$$
\begin{aligned}
V & =\iint_{R}\left(x+2 y^{2}\right) d A \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
& =f(1,0) \Delta A+f(1,2) \Delta A+f(2,0) \Delta A+f(2,2) \Delta A \\
& =1(2)+9(2)+2(2)+10(2)=44
\end{aligned}
$$

(b) $V=\iint_{R}\left(x+2 y^{2}\right) d A \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A$

$$
\begin{aligned}
& =f\left(\frac{1}{2}, 1\right) \Delta A+f\left(\frac{1}{2}, 3\right) \Delta A+f\left(\frac{3}{2}, 1\right) \Delta A+f\left(\frac{3}{2}, 3\right) \Delta A \\
& =\frac{5}{2}(2)+\frac{37}{2}(2)+\frac{7}{2}(2)+\frac{39}{2}(2)=88
\end{aligned}
$$

18. $\iint_{R} \frac{1+x^{2}}{1+y^{2}} d A=\int_{0}^{1} \int_{0}^{1} \frac{1+x^{2}}{1+y^{2}} d y d x=\int_{0}^{1}\left(1+x^{2}\right) d x \int_{0}^{1} \frac{1}{1+y^{2}} d y=\left[x+\frac{1}{3} x^{3}\right]_{0}^{1}\left[\tan ^{-1} y\right]_{0}^{1}$

$$
=\left(1+\frac{1}{3}-0\right)\left(\frac{\pi}{4}-0\right)=\frac{\pi}{3}
$$

30. The cylinder intersects the $x y$-plane along the line $x=4$, so in the first octant, the solid lies below the surface $z=16-x^{2}$ and above the rectangle $R=[0,4] \times[0,5]$ in the $x y$-plane.

$$
V=\int_{0}^{5} \int_{0}^{4}\left(16-x^{2}\right) d x d y=\int_{0}^{4}\left(16-x^{2}\right) d x \int_{0}^{5} d y=\left[16 x-\frac{1}{3} x^{3}\right]_{0}^{4}[y]_{0}^{5}=\left(64-\frac{64}{3}-0\right)(5-0)=\frac{640}{3}
$$

14.

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(x+y) d y d x & =\int_{0}^{1}\left[x y+\frac{1}{2} y^{2}\right]_{y=x^{2}}^{y=\sqrt{x}} d x \\
& =\int_{0}^{1}\left(x^{3 / 2}+\frac{1}{2} x-x^{3}-\frac{1}{2} x^{4}\right) d x \\
& =\left[\frac{2}{5} x^{5 / 2}+\frac{1}{4} x^{2}-\frac{1}{4} x^{4}-\frac{1}{10} x^{5}\right]_{0}^{1}=\frac{3}{10}
\end{aligned}
$$

24.

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{x}^{2-x} x d y d x \\
& =\int_{0}^{1} x[y]_{y=x}^{y=2-x} d x=\int_{0}^{1}\left(2 x-2 x^{2}\right) d x \\
& =\left[x^{2}-\frac{2}{3} x^{3}\right]_{0}^{1}=\frac{1}{3}
\end{aligned}
$$

28.

By symmetry, the desired volume V is 8 times the volume V_{1} in the first octant. Now

$$
\begin{aligned}
V_{1} & =\int_{0}^{r} \int_{0}^{\sqrt{r^{2}-y^{2}}} \sqrt{r^{2}-y^{2}} d x d y=\int_{0}^{r}\left[x \sqrt{r^{2}-y^{2}}\right]_{x=0}^{x=\sqrt{r^{2}-y^{2}}} d y \\
& =\int_{0}^{r}\left(r^{2}-y^{2}\right) d y=\left[r^{2} y-\frac{1}{3} y^{3}\right]_{0}^{r}=\frac{2}{3} r^{3}
\end{aligned}
$$

Thus $V=\frac{16}{3} r^{3}$.
44.

Because the region of integration is
48.

$$
\begin{aligned}
D & =\left\{(x, y) \left\lvert\, \arctan x \leq y \leq \frac{\pi}{4}\right., 0 \leq x \leq 1\right\} \\
& =\left\{(x, y) \mid 0 \leq x \leq \tan y, 0 \leq y \leq \frac{\pi}{4}\right\}
\end{aligned}
$$

we have

$$
\int_{0}^{1} \int_{\arctan x}^{\pi / 4} f(x, y) d y d x=\iint_{D} f(x, y) d A=\int_{0}^{\pi / 4} \int_{0}^{\tan y} f(x, y) d x d y
$$

we have

$$
\begin{aligned}
\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x & =\int_{0}^{1} \int_{0}^{y} e^{x / y} d x d y=\int_{0}^{1}\left[y e^{x / y}\right]_{x=0}^{x=y} d y \\
& \left.=\int_{0}^{1}(e-1) y d y=\frac{1}{2}(e-1) y^{2}\right]_{0}^{1} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

26. The two paraboloids intersect when $3 x^{2}+3 y^{2}=4-x^{2}-y^{2}$ or $x^{2}+y^{2}=1$. So

$$
\begin{aligned}
V & =\iint_{x^{2}+y^{2} \leq 1}\left[\left(4-x^{2}-y^{2}\right)-3\left(x^{2}+y^{2}\right)\right] d A=\int_{0}^{2 \pi} \int_{0}^{1} 4\left(1-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(4 r-4 r^{3}\right) d r=[\theta]_{0}^{2 \pi}\left[2 r^{2}-r^{4}\right]_{0}^{1}=2 \pi
\end{aligned}
$$

28. (a) Here the region in the $x y$-plane is the annular region $r_{1}^{2} \leq x^{2}+y^{2} \leq r_{2}^{2}$ and the desired volume is twice that above the $x y$-plane. Hence

$$
\begin{aligned}
V & =2 \iint_{r_{1}^{2} \leq x^{2}+y^{2} \leq r_{2}^{2}} \sqrt{r_{2}^{2}-x^{2}-y^{2}} d A=2 \int_{0}^{2 \pi} \int_{r_{1}}^{r_{2}} \sqrt{r_{2}^{2}-r^{2}} r d r d \theta=2 \int_{0}^{2 \pi} d \theta \int_{r_{1}}^{r_{2}} \sqrt{r_{2}^{2}-r^{2}} r d r \\
& =\frac{4 \pi}{3}\left[-\left(r_{2}^{2}-r^{2}\right)^{3 / 2}\right]_{r_{1}}^{r_{2}}=\frac{4 \pi}{3}\left(r_{2}^{2}-r_{1}^{2}\right)^{3 / 2}
\end{aligned}
$$

(b) A cross-sectional cut is shown in the figure.

$$
\text { So } r_{2}^{2}=\left(\frac{1}{2} h\right)^{2}+r_{1}^{2} \text { or } \frac{1}{4} h^{2}=r_{2}^{2}-r_{1}^{2} .
$$

Thus the volume in terms of h is $V=\frac{4 \pi}{3}\left(\frac{1}{4} h^{2}\right)^{3 / 2}=\frac{\pi}{6} h^{3}$.

32.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} d r d \theta & =\int_{0}^{\pi / 2}\left[\frac{1}{3} r^{3}\right]_{r=0}^{r=2 \cos \theta} d \theta=\int_{0}^{\pi / 2}\left(\frac{8}{3} \cos ^{3} \theta\right) d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2}\left(1-\sin ^{2} \theta\right) \cos \theta d \theta \\
& =\frac{8}{3}\left[\sin \theta-\frac{1}{3} \sin ^{3} \theta\right]_{0}^{\pi / 2}=\frac{16}{9}
\end{aligned}
$$

