34. $z=f(x, y)=1000-0.005 x^{2}-0.01 y^{2} \Rightarrow \nabla f(x, y)=\langle-0.01 x,-0.02 y\rangle$ and $\nabla f(60,40)=\langle-0.6,-0.8\rangle$.
(a) Due south is in the direction of the unit vector $\mathbf{u}=-\mathbf{j}$ and
$D_{\mathbf{u}} f(60,40)=\nabla f(60,40) \cdot\langle 0,-1\rangle=\langle-0.6,-0.8\rangle \cdot\langle 0,-1\rangle=0.8$. Thus, if you walk due south from $(60,40,966)$ you will ascend at a rate of 0.8 vertical meters per horizontal meter.
(b) Northwest is in the direction of the unit vector $\mathbf{u}=\frac{1}{\sqrt{2}}\langle-1,1\rangle$ and $D_{\mathbf{u}} f(60,40)=\nabla f(60,40) \cdot \frac{1}{\sqrt{2}}\langle-1,1\rangle=\langle-0.6,-0.8\rangle \cdot \frac{1}{\sqrt{2}}\langle-1,1\rangle=-\frac{0.2}{\sqrt{2}} \approx-0.14$. Thus, if you walk northwest from $(60,40,966)$ you will descend at a rate of approximately 0.14 vertical meters per horizontal meter.
(c) $\nabla f(60,40)=\langle-0.6,-0.8\rangle$ is the direction of largest slope with a rate of ascent given by
$|\nabla f(60,40)|=\sqrt{(-0.6)^{2}+(-0.8)^{2}}=1$. The angle above the horizontal in which the path begins is given by $\tan \theta=1 \Rightarrow \theta=45^{\circ}$.
35. $F(x, y, z)=y z-\ln (x+z) \Rightarrow \nabla F(x, y, z)=\left\langle-\frac{1}{x+z}, z, y-\frac{1}{x+z}\right\rangle$ and $\nabla F(0,0,1)=\langle-1,1,-1\rangle$.
(a) $(-1)(x-0)+(1)(y-0)-1(z-1)=0$ or $x-y+z=1$
(b) Parametric equations are $x=-t, y=t, z=1-t$ and symmetric equations are $\frac{x}{-1}=\frac{y}{1}=\frac{z-1}{-1}$ or $-x=y=1-z$.
36. Let x, y, z, be the positive numbers. Then $x+y+z=12$ and we want to minimize
$x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+(12-x-y)^{2}=f(x, y)$ for $0<x, y<12 . f_{x}=2 x+2(12-x-y)(-1)=4 x+2 y-24$,
$f_{y}=2 y+2(12-x-y)(-1)=2 x+4 y-24, f_{x x}=4, f_{x y}=2, f_{y y}=4$. Then $f_{x}=0$ implies $4 x+2 y=24$ or $y=12-2 x$ and substituting into $f_{y}=0$ gives $2 x+4(12-2 x)=24 \quad \Rightarrow \quad 6 x=24 \quad \Rightarrow \quad x=4$ and then $y=4$, so the only critical point is $(4,4) . D(4,4)=16-4>0$ and $f_{x x}(4,4)=4>0$, so $f(4,4)$ is a local minimum. $f(4,4)$ is also the absolute minimum [compare to the values of f as $x, y \rightarrow 0$ or 12] so the numbers are $x=y=z=4$.
37. Any such plane must cut out a tetrahedron in the first octant. We need to minimize the volume of the tetrahedron that passes through the point $(1,2,3)$. Writing the equation of the plane as $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, the volume of the tetrahedron is given by $V=\frac{a b c}{6}$. But $(1,2,3)$ must lie on the plane, so we need $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1(\star)$ and thus can think of c as a function of a and b. Then $V_{a}=\frac{b}{6}\left(c+a \frac{\partial c}{\partial a}\right)$ and $V_{b}=\frac{a}{6}\left(c+b \frac{\partial c}{\partial b}\right)$. Differentiating (\star) with respect to a we get $-a^{-2}-3 c^{-2} \frac{\partial c}{\partial a}=0 \Rightarrow$ $\frac{\partial c}{\partial a}=\frac{-c^{2}}{3 a^{2}}$, and differentiating (\star) with respect to b gives $-2 b^{-2}-3 c^{-2} \frac{\partial c}{\partial b}=0 \Rightarrow \frac{\partial c}{\partial b}=\frac{-2 c^{2}}{3 b^{2}}$. Then $V_{a}=\frac{b}{6}\left(c+a \frac{-c^{2}}{3 a^{2}}\right)=0 \Rightarrow c=3 a$, and $V_{b}=\frac{a}{6}\left(c+b \frac{-2 c^{2}}{3 b^{2}}\right)=0 \Rightarrow c=\frac{3}{2} b$. Thus $3 a=\frac{3}{2} b$ or $b=2 a$. Putting these into (\star) gives $\frac{3}{a}=1$ or $a=3$ and then $b=6, c=9$. Thus the equation of the required plane is $\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$ or $6 x+3 y+2 z=18$.

Page 1

41. We need to find the extreme values of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the two constraints $g(x, y, z)=x+y+2 z=2$ and $h(x, y, z)=x^{2}+y^{2}-z=0 . \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \lambda \nabla g=\langle\lambda, \lambda, 2 \lambda\rangle$ and $\mu \nabla h=\langle 2 \mu x, 2 \mu y,-\mu\rangle$. Thus we need $2 x=\lambda+2 \mu x$ (1), $\quad 2 y=\lambda+2 \mu y$ (2), $\quad 2 z=2 \lambda-\mu$ (3),$\quad x+y+2 z=2$ (4), and $x^{2}+y^{2}-z=0$ (5).
From (1) and (2), $2(x-y)=2 \mu(x-y)$, so if $x \neq y, \mu=1$. Putting this in (3) gives $2 z=2 \lambda-1$ or $\lambda=z+\frac{1}{2}$, but putting $\mu=1$ into (1) says $\lambda=0$. Hence $z+\frac{1}{2}=0$ or $z=-\frac{1}{2}$. Then (4) and (5) become $x+y-3=0$ and $x^{2}+y^{2}+\frac{1}{2}=0$. The last equation cannot be true, so this case gives no solution. So we must have $x=y$. Then (4) and (5) become $2 x+2 z=2$ and $2 x^{2}-z=0$ which imply $z=1-x$ and $z=2 x^{2}$. Thus $2 x^{2}=1-x$ or $2 x^{2}+x-1=(2 x-1)(x+1)=0$ so $x=\frac{1}{2}$ or $x=-1$. The two points to check are $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(-1,-1,2): f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{4}$ and $f(-1,-1,2)=6$. Thus $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is the point on the ellipse nearest the origin and $(-1,-1,2)$ is the one farthest from the origin.
42. Inside $D: f_{x}=2 x e^{-x^{2}-y^{2}}\left(1-x^{2}-2 y^{2}\right)=0$ implies $x=0$ or $x^{2}+2 y^{2}=1$. Then if $x=0$, $f_{y}=2 y e^{-x^{2}-y^{2}}\left(2-x^{2}-2 y^{2}\right)=0$ implies $y=0$ or $2-2 y^{2}=0$ giving the critical points $(0,0),(0, \pm 1)$. If $x^{2}+2 y^{2}=1$, then $f_{y}=0$ implies $y=0$ giving the critical points $(\pm 1,0)$. Now $f(0,0)=0, f(\pm 1,0)=e^{-1}$ and $f(0, \pm 1)=2 e^{-1}$. On the boundary of $D: x^{2}+y^{2}=4$, so $f(x, y)=e^{-4}\left(4+y^{2}\right)$ and f is smallest when $y=0$ and largest when $y^{2}=4$. But $f(\pm 2,0)=4 e^{-4}, f(0, \pm 2)=8 e^{-4}$. Thus on D the absolute maximum of f is $f(0, \pm 1)=2 e^{-1}$ and the absolute minimum is $f(0,0)=0$.
43. $f(x, y)=1 / x+1 / y, g(x, y)=1 / x^{2}+1 / y^{2}=1 \Rightarrow \nabla f=\left\langle-x^{-2},-y^{-2}\right\rangle=\lambda \nabla g=\left\langle-2 \lambda x^{-3},-2 \lambda y^{-3}\right\rangle$. Then $-x^{-2}=-2 \lambda x^{3}$ or $x=2 \lambda$ and $-y^{-2}=-2 \lambda y^{-3}$ or $y=2 \lambda$. Thus $x=y$, so $1 / x^{2}+1 / y^{2}=2 / x^{2}=1$ implies $x= \pm \sqrt{2}$ and the possible points are $(\pm \sqrt{2}, \pm \sqrt{2})$. The absolute maximum of f subject to $x^{-2}+y^{-2}=1$ is then $f(\sqrt{2}, \sqrt{2})=\sqrt{2}$ and the absolute minimum is $f(-\sqrt{2},-\sqrt{2})=-\sqrt{2}$.
