44. $k=y \sec x$ or $y=k \cos x, x \neq \frac{\pi}{2}+n \pi$ [n an integer].

45. $f(x, y, z)=\frac{y z}{x^{2}+4 y^{2}+9 z^{2}}$. Then $f(x, 0,0)=0$ for $x \neq 0$, so as $(x, y, z) \rightarrow(0,0,0)$ along the x-axis, $f(x, y, z) \rightarrow 0$. But $f(0, y, y)=y^{2} /\left(13 y^{2}\right)=\frac{1}{13}$ for $y \neq 0$, so as $(x, y, z) \rightarrow(0,0,0)$ along the line $z=y, x=0, f(x, y, z) \rightarrow \frac{1}{13}$. Thus the limit doesn't exist.
46. $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+x y+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array} \quad\right.$ The first piece of f is a rational function defined everywhere except at the origin, so f is continuous on \mathbb{R}^{2} except possibly at the origin. $f(x, 0)=0 / x^{2}=0$ for $x \neq 0$, so $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along the x-axis. But $f(x, x)=x^{2} /\left(3 x^{2}\right)=\frac{1}{3}$ for $x \neq 0$, so $f(x, y) \rightarrow \frac{1}{3}$ as $(x, y) \rightarrow(0,0)$ along the line $y=x$. Thus $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist, so f is not continuous at $(0,0)$ and the largest set on which f is continuous is $\{(x, y) \mid(x, y) \neq(\mathbf{0}, \mathbf{0})\}$.
47. $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\lim _{r \rightarrow 0^{+}} \frac{\sin \left(r^{2}\right)}{r^{2}}$, which is an indeterminate form of type $0 / 0$. Using 1'Hospital's Rule, we get $\lim _{r \rightarrow 0^{+}} \frac{\sin \left(r^{2}\right)}{r^{2}} \stackrel{\mathrm{H}}{=} \lim _{r \rightarrow 0^{+}} \frac{2 r \cos \left(r^{2}\right)}{2 r}=\lim _{r \rightarrow 0^{+}} \cos \left(r^{2}\right)=1$.

Or: Use the fact that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.

80. (a) $\partial T / \partial x=-60(2 x) /\left(1+x^{2}+y^{2}\right)^{2}$, so at $(2,1), T_{x}=-240 /(1+4+1)^{2}=-\frac{20}{3}$.
(b) $\partial T / \partial y=-60(2 y) /\left(1+x^{2}+y^{2}\right)^{2}$, so at $(2,1), T_{y}=-120 / 36=-\frac{10}{3}$. Thus from the point $(2,1)$ the temperature is decreasing at a rate of $\frac{20}{3}{ }^{\circ} \mathrm{C} / \mathrm{m}$ in the x-direction and is decreasing at a rate of $\frac{10}{3}{ }^{\circ} \mathrm{C} / \mathrm{m}$ in the y-direction.
6. $z=f(x, y)=e^{x^{2}-y^{2}} \Rightarrow f_{x}(x, y)=2 x e^{x^{2}-y^{2}}, f_{y}(x, y)=-2 y e^{x^{2}-y^{2}}$, so $f_{x}(1,-1)=2, f_{y}(1,-1)=2$.

By Equation 2, an equation of the tangent plane is $z-1=f_{x}(1,-1)(x-1)+f_{y}(1,-1)[y-(-1)] \Rightarrow$ $z-1=2(x-1)+2(y+1)$ or $z=2 x+2 y+1$.

Page 1

40. Let x, y, z and w be the four numbers with $p(x, y, z, w)=x y z w$. Since the largest error due to rounding for each number is 0.05 , the maximum error in the calculated product is approximated by $d p=(y z w)(0.05)+(x z w)(0.05)+(x y w)(0.05)+(x y z)(0.05)$. Furthermore, each of the numbers is positive but less than 50 , so the product of any three is between 0 and $(50)^{3}$. Thus $d p \leq 4(50)^{3}(0.05)=25,000$.
41. $\mathbf{r}_{1}(t)=\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle \quad \Rightarrow \quad \mathbf{r}_{1}^{\prime}(t)=\langle 3,-2 t,-4+2 t\rangle, \mathbf{r}_{2}(u)=\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle \Rightarrow$ $\mathbf{r}_{2}^{\prime}(u)=\left\langle 2 u, 6 u^{2}, 2\right\rangle$. Both curves pass through P since $\mathbf{r}_{1}(0)=\mathbf{r}_{2}(1)=\langle 2,1,3\rangle$, so the tangent vectors $\mathbf{r}_{1}^{\prime}(0)=\langle 3,0,-4\rangle$ and $\mathbf{r}_{2}^{\prime}(1)=\langle 2,6,2\rangle$ are both parallel to the tangent plane to S at P. A normal vector for the tangent plane is $\mathbf{r}_{1}^{\prime}(0) \times \mathbf{r}_{2}^{\prime}(1)=\langle 3,0,-4\rangle \times\langle 2,6,2\rangle=\langle 24,-14,18\rangle$, so an equation of the tangent plane is $24(x-2)-14(y-1)+18(z-3)=0$ or $12 x-7 y+9 z=44$.
42. $M=x e^{y-z^{2}}, x=2 u v, y=u-v, z=u+v \Rightarrow$
$\frac{\partial M}{\partial u}=\frac{\partial M}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial M}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial M}{\partial z} \frac{\partial z}{\partial u}=e^{y-z^{2}}(2 v)+x e^{y-z^{2}}(1)+x(-2 z) e^{y-z^{2}}(1)=e^{y-z^{2}}(2 v+x-2 x z)$, $\frac{\partial M}{\partial v}=\frac{\partial M}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial M}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial M}{\partial z} \frac{\partial z}{\partial v}=e^{y-z^{2}}(2 u)+x e^{y-z^{2}}(-1)+x(-2 z) e^{y-z^{2}}(1)=e^{y-z^{2}}(2 u-x-2 x z)$.
When $u=3, v=-1$ we have $x=-6, y=4$, and $z=2$, so $\frac{\partial M}{\partial u}=16$ and $\frac{\partial M}{\partial v}=36$.
43. $f_{o}=\left(\frac{c+v_{o}}{c-v_{s}}\right) f_{s}=\left(\frac{332+34}{332-40}\right) 460 \approx 576.6 \mathrm{~Hz}$. v_{o} and v_{s} are functions of time t, so

$$
\begin{aligned}
\frac{d f_{o}}{d t} & =\frac{\partial f_{o}}{\partial v_{o}} \frac{d v_{o}}{d t}+\frac{\partial f_{o}}{\partial v_{s}} \frac{d v_{s}}{d t}=\left(\frac{1}{c-v_{s}}\right) f_{s} \cdot \frac{d v_{o}}{d t}+\frac{c+v_{o}}{\left(c-v_{s}\right)^{2}} f_{s} \cdot \frac{d v_{s}}{d t} \\
& =\left(\frac{1}{332-40}\right)(460)(1.2)+\frac{332+34}{(332-40)^{2}}(460)(1.4) \approx 4.65 \mathrm{~Hz} / \mathrm{s}
\end{aligned}
$$

