12. Let $C$ be the curve of intersection. The projection of $C$ onto the $x y$-plane is the ellipse $4 x^{2}+y^{2}=4$ or $x^{2}+y^{2} / 4=1$, $z=0$. Then we can write $x=\cos t, y=2 \sin t, 0 \leq t \leq 2 \pi$. Since $C$ also lies on the plane $x+y+z=2$, we have $z=2-x-y=2-\cos t-2 \sin t$. Then parametric equations for $C$ are $x=\cos t, y=2 \sin t, z=2-\cos t-2 \sin t$, $0 \leq t \leq 2 \pi$, and the corresponding vector equation is $\mathbf{r}(t)=\langle\cos t, 2 \sin t, 2-\cos t-2 \sin t\rangle$. Differentiating gives $\mathbf{r}^{\prime}(t)=\langle-\sin t, 2 \cos t, \sin t-2 \cos t\rangle \quad \Rightarrow$ $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(-\sin t)^{2}+(2 \cos t)^{2}+(\sin t-2 \cos t)^{2}}=\sqrt{2 \sin ^{2} t+8 \cos ^{2} t-4 \sin t \cos t}$. The length of $C$ is $L=\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} \sqrt{2 \sin ^{2} t+8 \cos ^{2} t-4 \sin t \cos t} d t \approx 13.5191$.
13. $\mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, t\right\rangle \Rightarrow \mathbf{r}^{\prime}(t)=\left\langle e^{t} \cos t-e^{t} \sin t, e^{t} \cos t+e^{t} \sin t, 1\right\rangle$. The point $(1,0,0)$ corresponds to $t=0$, and $\mathbf{r}^{\prime}(0)=\langle 1,1,1\rangle \Rightarrow\left|\mathbf{r}^{\prime}(0)\right|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$.
$\mathbf{r}^{\prime \prime}(t)=\left\langle e^{t} \cos t-e^{t} \sin t-e^{t} \cos t-e^{t} \sin t, e^{t} \cos t-e^{t} \sin t+e^{t} \cos t+e^{t} \sin t, 0\right\rangle=\left\langle-2 e^{t} \sin t, 2 e^{t} \cos t, 0\right\rangle \Rightarrow$ $\mathbf{r}^{\prime \prime}(0)=\langle 0,2,0\rangle . \quad \mathbf{r}^{\prime}(0) \times \mathbf{r}^{\prime \prime}(0)=\langle-2,0,2\rangle . \quad\left|\mathbf{r}^{\prime}(0) \times \mathbf{r}^{\prime \prime}(0)\right|=\sqrt{(-2)^{2}+0^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$.
Then $\kappa(0)=\frac{\left|\mathbf{r}^{\prime}(0) \times \mathbf{r}^{\prime \prime}(0)\right|}{\left|\mathbf{r}^{\prime}(0)\right|^{3}}=\frac{2 \sqrt{2}}{(\sqrt{3})^{3}}=\frac{2 \sqrt{2}}{3 \sqrt{3}}$ or $\frac{2 \sqrt{6}}{9}$.
14. Here $v_{0}=115 \mathrm{ft} / \mathrm{s}$, the angle of elevation is $\alpha=50^{\circ}$, and if we place the origin at home plate, then $\mathbf{r}(0)=3 \mathbf{j}$. As in Example 5, we have $\mathbf{r}(t)=-\frac{1}{2} g t^{2} \mathbf{j}+t \mathbf{v}_{0}+\mathbf{D}$ where $\mathbf{D}=\mathbf{r}(0)=3 \mathbf{j}$ and $\mathbf{v}_{0}=v_{0} \cos \alpha \mathbf{i}+v_{0} \sin \alpha \mathbf{j}$, so $\mathbf{r}(t)=\left(v_{0} \cos \alpha\right) t \mathbf{i}+\left[\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}+3\right] \mathbf{j}$. Thus, parametric equations for the trajectory of the ball are $x=\left(v_{0} \cos \alpha\right) t, y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}+3$. The ball reaches the fence when $x=400 \Rightarrow$ $\left(v_{0} \cos \alpha\right) t=400 \Rightarrow t=\frac{400}{v_{0} \cos \alpha}=\frac{400}{115 \cos 50^{\circ}} \approx 5.41 \mathrm{~s}$. At this time, the height of the ball is $y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}+3 \approx\left(115 \sin 50^{\circ}\right)(5.41)-\frac{1}{2}(32)(5.41)^{2}+3 \approx 11.2 \mathrm{ft}$. Since the fence is 10 ft high, the ball clears the fence.
15. As in Exercise 31(b), let $\alpha$ be the angle north of east that the boat heads, so the velocity of the boat in still water is given by $5(\cos \alpha) \mathbf{i}+5(\sin \alpha) \mathbf{j}$. At $t$ seconds, the boat is $5(\cos \alpha) t$ meters from the west bank, at which point the velocity of the water is $3 \sin (\pi x / 40) \mathbf{j}=3 \sin [\pi \cdot 5(\cos \alpha) t / 40] \mathbf{j}=3 \sin \left(\frac{\pi}{8} t \cos \alpha\right) \mathbf{j}$. The resultant velocity of the boat then is given by $\mathbf{v}(t)=5(\cos \alpha) \mathbf{i}+\left[5 \sin \alpha+3 \sin \left(\frac{\pi}{8} t \cos \alpha\right)\right] \mathbf{j}$. Integrating,
$\mathbf{r}(t)=(5 t \cos \alpha) \mathbf{i}+\left[5 t \sin \alpha-\frac{24}{\pi \cos \alpha} \cos \left(\frac{\pi}{8} t \cos \alpha\right)\right] \mathbf{j}+\mathbf{C}$.
If we place the origin at $A$ then $\mathbf{r}(0)=\mathbf{0} \Rightarrow-\frac{24}{\pi \cos \alpha} \mathbf{j}+\mathbf{C}=\mathbf{0} \Rightarrow \mathbf{C}=\frac{24}{\pi \cos \alpha} \mathbf{j}$ and
$\mathbf{r}(t)=(5 t \cos \alpha) \mathbf{i}+\left[5 t \sin \alpha-\frac{24}{\pi \cos \alpha} \cos \left(\frac{\pi}{8} t \cos \alpha\right)+\frac{24}{\pi \cos \alpha}\right] \mathbf{j}$.
The boat will reach the east bank when $5 t \cos \alpha=40 \Rightarrow t=\frac{8}{\cos \alpha}$.
In order to land at point $B(40,0)$ we need $5 t \sin \alpha-\frac{24}{\pi \cos \alpha} \cos \left(\frac{\pi}{8} t \cos \alpha\right)+\frac{24}{\pi \cos \alpha}=0 \Rightarrow$
$5\left(\frac{8}{\cos \alpha}\right) \sin \alpha-\frac{24}{\pi \cos \alpha} \cos \left[\frac{\pi}{8}\left(\frac{8}{\cos \alpha}\right) \cos \alpha\right]+\frac{24}{\pi \cos \alpha}=0 \Rightarrow \frac{1}{\cos \alpha}\left(40 \sin \alpha-\frac{24}{\pi} \cos \pi+\frac{24}{\pi}\right)=0 \Rightarrow$ $40 \sin \alpha+\frac{48}{\pi}=0 \Rightarrow \sin \alpha=-\frac{6}{5 \pi}$. Thus $\alpha=\sin ^{-1}\left(-\frac{6}{5 \pi}\right) \approx-22.5^{\circ}$, so the boat should head $22.5^{\circ}$ south of east.
16. $\mathbf{r}(t)=t \mathbf{i}+\cos ^{2} t \mathbf{j}+\sin ^{2} t \mathbf{k} \Rightarrow \mathbf{r}^{\prime}(t)=\mathbf{i}-2 \cos t \sin t \mathbf{j}+2 \sin t \cos t \mathbf{k}=\mathbf{i}-\sin 2 t \mathbf{j}+\sin 2 t \mathbf{k}$, $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{1+2 \sin ^{2} 2 t}, \mathbf{r}^{\prime \prime}(t)=2\left(\sin ^{2} t-\cos ^{2} t\right) \mathbf{j}+2\left(\cos ^{2} t-\sin ^{2} t\right) \mathbf{k}=-2 \cos 2 t \mathbf{j}+2 \cos 2 t \mathbf{k}$. So $a_{T}=\frac{2 \sin 2 t \cos 2 t+2 \sin 2 t \cos 2 t}{\sqrt{1+2 \sin ^{2} 2 t}}=\frac{4 \sin 2 t \cos 2 t}{\sqrt{1+2 \sin ^{2} 2 t}}$ and $a_{N}=\frac{|-2 \cos 2 t \mathbf{j}-2 \cos 2 t \mathbf{k}|}{\sqrt{1+2 \sin ^{2} 2 t}}=\frac{2 \sqrt{2}|\cos 2 t|}{\sqrt{1+2 \sin ^{2} t}}$.
17. (a) $C$ intersects the $x z$-plane where $y=0 \Rightarrow 2 t-1=0 \Rightarrow t=\frac{1}{2}$, so the point is $\left(2-\left(\frac{1}{2}\right)^{3}, 0, \ln \frac{1}{2}\right)=\left(\frac{15}{8}, 0,-\ln 2\right)$.
(b) The curve is given by $\mathbf{r}(t)=\left\langle 2-t^{3}, 2 t-1, \ln t\right\rangle$, so $\mathbf{r}^{\prime}(t)=\left\langle-3 t^{2}, 2,1 / t\right\rangle$. The point $(1,1,0)$ corresponds to $t=1$, so the tangent vector there is $\mathbf{r}^{\prime}(1)=\langle-3,2,1\rangle$. Then the tangent line has direction vector $\langle-3,2,1\rangle$ and includes the point $(1,1,0)$, so parametric equations are $x=1-3 t, y=1+2 t, z=t$.
(c) The normal plane has normal vector $\mathbf{r}^{\prime}(1)=\langle-3,2,1\rangle$ and equation $-3(x-1)+2(y-1)+z=0$ or $3 x-2 y-z=1$.
18. The parametric value corresponding to the point $(1,0,1)$ is $t=0$.
$\mathbf{r}^{\prime}(t)=e^{t} \mathbf{i}+e^{t}(\cos t+\sin t) \mathbf{j}+e^{t}(\cos t-\sin t) \mathbf{k} \Rightarrow\left|\mathbf{r}^{\prime}(t)\right|=e^{t} \sqrt{1+(\cos t+\sin t)^{2}+(\cos t-\sin t)^{2}}=\sqrt{3} e^{t}$ and $s(t)=\int_{0}^{t} e^{u} \sqrt{3} d u=\sqrt{3}\left(e^{t}-1\right) \Rightarrow t=\ln \left(1+\frac{1}{\sqrt{3}} s\right)$.

Therefore, $\mathbf{r}(t(s))=\left(1+\frac{1}{\sqrt{3}} s\right) \mathbf{i}+\left(1+\frac{1}{\sqrt{3}} s\right) \sin \ln \left(1+\frac{1}{\sqrt{3}} s\right) \mathbf{j}+\left(1+\frac{1}{\sqrt{3}} s\right) \cos \ln \left(1+\frac{1}{\sqrt{3}} s\right) \mathbf{k}$.

## Page 2

