8. $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$ and

$$
\begin{aligned}
\iint_{S} y d S & =\iint_{D} y \sqrt{(\sqrt{x})^{2}+(\sqrt{y})^{2}+1} d A=\int_{0}^{1} \int_{0}^{1} y \sqrt{x+y+1} d x d y \\
& =\int_{0}^{1} y\left[\frac{2}{3}(x+y+1)^{3 / 2}\right]_{x=0}^{x=1} d y=\int_{0}^{1} \frac{2}{3} y\left[(y+2)^{3 / 2}-(y+1)^{3 / 2}\right] d y
\end{aligned}
$$

Substituting $u=y+2$ in the first term and $t=y+1$ in the second, we have

$$
\begin{aligned}
\iint_{S} y d S & =\frac{2}{3} \int_{2}^{3}(u-2) u^{3 / 2} d u-\frac{2}{3} \int_{1}^{2}(t-1) t^{3 / 2} d t=\frac{2}{3}\left[\frac{2}{7} u^{7 / 2}-\frac{4}{5} u^{5 / 2}\right]_{2}^{3}-\frac{2}{3}\left[\frac{2}{7} t^{7 / 2}-\frac{2}{5} t^{5 / 2}\right]_{1}^{2} \\
& =\frac{2}{3}\left[\frac{2}{7}\left(3^{7 / 2}-2^{7 / 2}\right)-\frac{4}{5}\left(3^{5 / 2}-2^{5 / 2}\right)-\frac{2}{7}\left(2^{7 / 2}-1\right)+\frac{2}{5}\left(2^{5 / 2}-1\right)\right] \\
& =\frac{2}{3}\left(\frac{18}{35} \sqrt{3}+\frac{8}{35} \sqrt{2}-\frac{4}{35}\right)=\frac{4}{105}(9 \sqrt{3}+4 \sqrt{2}-2)
\end{aligned}
$$

16. Here S consists of three surfaces: S_{1}, the lateral surface of the cylinder; S_{2}, the front formed by the plane $x+y=5$; and the back, S_{3}, in the plane $x=0$.

On S_{1} : the surface is given by $\mathbf{r}(u, v)=u \mathbf{i}+3 \cos v \mathbf{j}+3 \sin v \mathbf{k}, 0 \leq v \leq 2 \pi$, and $0 \leq x \leq 5-y \Rightarrow$ $0 \leq u \leq 5-3 \cos v$. Then $\mathbf{r}_{u} \times \mathbf{r}_{v}=-3 \cos v \mathbf{j}-3 \sin v \mathbf{k}$ and $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{9 \cos ^{2} v+9 \sin ^{2} v}=3$, so

$$
\begin{aligned}
\iint_{S_{1}} x z d S & =\int_{0}^{2 \pi} \int_{0}^{5-3 \cos v} u(3 \sin v)(3) d u d v=9 \int_{0}^{2 \pi}\left[\frac{1}{2} u^{2}\right]_{u=0}^{u=5-3 \cos v} \sin v d v \\
& =\frac{9}{2} \int_{0}^{2 \pi}(5-3 \cos v)^{2} \sin v d v=\frac{9}{2}\left[\frac{1}{9}(5-3 \cos v)^{3}\right]_{0}^{2 \pi}=0
\end{aligned}
$$

On $S_{2}: \mathbf{r}(y, z)=(5-y) \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\left|\mathbf{r}_{y} \times \mathbf{r}_{z}\right|=|\mathbf{i}+\mathbf{j}|=\sqrt{2}$, where $y^{2}+z^{2} \leq 9$ and

$$
\begin{aligned}
\iint_{S_{2}} x z d S & =\iint_{y^{2}+z^{2} \leq 9}(5-y) z \sqrt{2} d A=\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{3}(5-r \cos \theta)(r \sin \theta) r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{3}\left(5 r^{2}-r^{3} \cos \theta\right)(\sin \theta) d r d \theta=\sqrt{2} \int_{0}^{2 \pi}\left[\frac{5}{3} r^{3}-\frac{1}{4} r^{4} \cos \theta\right]_{r=0}^{r=3} \sin \theta d \theta \\
& \left.=\sqrt{2} \int_{0}^{2 \pi}\left(45-\frac{81}{4} \cos \theta\right) \sin \theta d \theta=\sqrt{2}\left(\frac{4}{81}\right) \cdot \frac{1}{2}\left(45-\frac{81}{4} \cos \theta\right)^{2}\right]_{0}^{2 \pi}=0
\end{aligned}
$$

On $S_{\mathbf{3}}: x=0$ so $\iint_{\mathcal{S}_{3}} x z d S=0$. Hence $\iint_{\mathcal{S}} x z d S=\mathbf{0}+\mathbf{0}+\mathbf{0}=\mathbf{0}$.
22. $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z^{4} \mathbf{k}, z=g(x, y)=\sqrt{x^{2}+y^{2}}$, and D is the disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Since S has downward orientation, we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =-\iint_{D}\left[-x\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)-y\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)+z^{4}\right] d A=-\iint_{D}\left[\frac{-x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}+\left(\sqrt{x^{2}+y^{2}}\right)^{4}\right] d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{1}\left(\frac{-r^{2}}{r}+r^{4}\right) r d r d \theta=-\int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(r^{5}-r^{2}\right) d r=-2 \pi\left(\frac{1}{6}-\frac{1}{3}\right)=\frac{\pi}{3}
\end{aligned}
$$

18. $\int_{C}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z=\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=(y+\sin x) \mathbf{i}+\left(z^{2}+\cos y\right) \mathbf{j}+x^{3} \mathbf{k} \Rightarrow$ $\operatorname{curl} \mathbf{F}=-2 z \mathbf{i}-3 x^{2} \mathbf{j}-\mathbf{k}$. Since $\sin 2 t=2 \sin t \cos t, C$ lies on the surface $z=2 x y$. Let S be the part of this surface that is bounded by C. Then the projection of S onto the $x y$-plane is the unit disk $D\left[x^{2}+y^{2} \leq 1\right] . C$ is traversed clockwise (when viewed from above) so S is oriented downward. Using Equation 17.7.10 [ET 16.7.10] with $g(x, y)=2 x y$, $P=-2 z=-2(2 x y)=-4 x y, Q=-3 x^{2}, R=-1$ and multiplying by -1 for the downward orientation, we have

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =-\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=-\iint_{D}\left[-(-4 x y)(2 y)-\left(-3 x^{2}\right)(2 x)-1\right] d A \\
& =-\iint_{D}\left(8 x y^{2}+6 x^{3}-1\right) d A=-\int_{0}^{2 \pi} \int_{0}^{1}\left(8 r^{3} \cos \theta \sin ^{2} \theta+6 r^{3} \cos ^{3} \theta-1\right) r d r d \theta \\
& =-\int_{0}^{2 \pi}\left(\frac{8}{5} \cos \theta \sin ^{2} \theta+\frac{6}{5} \cos ^{3} \theta-\frac{1}{2}\right) d \theta=-\left[\frac{8}{15} \sin ^{3} \theta+\frac{6}{5}\left(\sin \theta-\frac{1}{3} \sin ^{3} \theta\right)-\frac{1}{2} \theta\right]_{0}^{2 \pi}=\pi
\end{aligned}
$$

20. (a) By Exercise 17.5.26 [ET 16.5.26], $\operatorname{curl}(f \nabla g)=f \operatorname{curl}(\nabla g)+\nabla f \times \nabla g=\nabla f \times \nabla g$ since $\operatorname{curl}(\nabla g)=\mathbf{0}$. Hence by Stokes' Theorem $\int_{C}(f \nabla g) \cdot d \mathbf{r}=\iint_{S}(\nabla f \times \nabla g) \cdot d \mathbf{S}$.
(b) As in (a), $\operatorname{curl}(f \nabla f)=\nabla f \times \nabla f=\mathbf{0}$, so by Stokes' Theorem, $\int_{C}(f \nabla f) \cdot d \mathbf{r}=\iint_{S}[\operatorname{curl}(f \nabla f)] \cdot d \mathbf{S}=\mathbf{0}$.
(c) As in part (a),

$$
\begin{aligned}
\operatorname{curl}(f \nabla g+g \nabla f) & =\operatorname{curl}(f \nabla g)+\operatorname{curl}(g \nabla f) \quad[\text { by Exercise 17.5.24[ET 16.5.24]] } \\
& =(\nabla f \times \nabla g)+(\nabla g \times \nabla f)=\mathbf{0} \quad[\text { since } \mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})]
\end{aligned}
$$

Hence by Stokes' Theorem, $\int_{C}(f \nabla g+g \nabla f) \cdot d \mathbf{r}=\iint_{S} \operatorname{curl}(f \nabla g+g \nabla f) \cdot d \mathbf{S}=\mathbf{0}$.
9. $\operatorname{div} \mathbf{F}=y \sin z+0-y \sin z=0$, so by the Divergence Theorem, $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} 0 d V=0$.
18. As in the hint to Exercise 19, we create a closed surface $S_{2}=S \cup S_{1}$, where S is the part of the paraboloid $x^{2}+y^{2}+z=2$ that lies above the plane $z=1$, and S_{1} is the disk $x^{2}+y^{2}=1$ on the plane $z=1$ oriented downward, and we then apply the Divergence Theorem. Since the disk S_{1} is oriented downward, its unit normal vector is $\mathbf{n}=-\mathbf{k}$ and $\mathbf{F} \cdot(-\mathbf{k})=-z=-1$ on S_{1}. So $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{1}}(-1) d S=-A\left(S_{1}\right)=-\pi$. Let E be the region bounded by S_{2}. Then $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V=\iiint_{E} 1 d V=\int_{0}^{1} \int_{0}^{2 \pi} \int_{1}^{2-r^{2}} r d z d \theta d r=\int_{0}^{1} \int_{0}^{2 \pi}\left(r-r^{3}\right) d \theta d r=(2 \pi) \frac{1}{4}=\frac{\pi}{2}$. Thus the flux of \mathbf{F} across S is $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}-\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\frac{\pi}{2}-(-\pi)=\frac{3 \pi}{2}$.
24. We first need to find \mathbf{F} so that $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S}\left(2 x+2 y+z^{2}\right) d S$, so $\mathbf{F} \cdot \mathbf{n}=2 x+2 y+z^{2}$. But for S, $\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Thus $\mathbf{F}=2 \mathbf{i}+2 \mathbf{j}+z \mathbf{k}$ and $\operatorname{div} \mathbf{F}=1$. If $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$, then $\iint_{S}\left(2 x+2 y+z^{2}\right) d S=\iiint_{B} d V=V(B)=\frac{4}{3} \pi(1)^{3}=\frac{4}{3} \pi$.
27. $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div}(\operatorname{curl} \mathbf{F}) d V=0$ by Theorem 17.5.11 [ET 16.5.11].

Page 2

