22. The largest sphere contained in the first octant must have a radius equal to the minimum distance from the center $(5,4,9)$ to any of the three coordinate planes. The shortest such distance is to the $x z$-plane, a distance of 4 . Thus an equation of the sphere is $(x-5)^{2}+(y-4)^{2}+(z-9)^{2}=16$.
23. The inequality $x^{2}+y^{2}+z^{2}>2 z \Leftrightarrow x^{2}+y^{2}+(z-1)^{2}>1$ is equivalent to $\sqrt{x^{2}+y^{2}+(z-1)^{2}}>1$, so the region consists of those points whose distance from the point $(0,0,1)$ is greater than 1 . This is the set of all points outside the sphere with radius 1 and center $(0,0,1)$.
24. Set up the coordinate axes so that north is the positive y-direction, and east is the positive x-direction. The wind is blowing at $50 \mathrm{~km} / \mathrm{h}$ from the direction $\mathrm{N} 45^{\circ} \mathrm{W}$, so that its velocity vector is $50 \mathrm{~km} / \mathrm{h} \mathrm{S} 45^{\circ} \mathrm{E}$, which can be written as $\mathbf{v}_{\text {wind }}=50\left(\cos 45^{\circ} \mathbf{i}-\sin 45^{\circ} \mathbf{j}\right)$. With respect to the still air, the velocity vector of the plane is $250 \mathrm{~km} / \mathrm{h} \mathrm{N} 60^{\circ} \mathrm{E}$, or equivalently $\mathbf{v}_{\text {plane }}=250\left(\cos 30^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}\right)$. The velocity of the plane relative to the ground is

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{\text {wind }}+\mathbf{v}_{\text {plane }}=\left(50 \cos 45^{\circ}+250 \cos 30^{\circ}\right) \mathbf{i}+\left(-50 \sin 45^{\circ}+250 \sin 30^{\circ}\right) \mathbf{j} \\
& =(25 \sqrt{2}+125 \sqrt{3}) \mathbf{i}+(125-25 \sqrt{2}) \mathbf{j} \approx 251.9 \mathbf{i}+89.6 \mathbf{j}
\end{aligned}
$$

The ground speed is $|\mathbf{v}| \approx \sqrt{(251.9)^{2}+(89.6)^{2}} \approx 267 \mathrm{~km} / \mathrm{h}$. The angle the velocity vector makes with the x-axis is $\theta \approx \tan ^{-1}\left(\frac{89.6}{251.9}\right) \approx 20^{\circ}$. Therefore, the true course of the plane is about $\mathrm{N}(90-20)^{\circ} \mathrm{E}=\mathrm{N} 70^{\circ} \mathrm{E}$.
42. Let P_{1} and P_{2} be the points with position vectors \mathbf{r}_{1} and \mathbf{r}_{2} respectively. Then $\left|\mathbf{r}-\mathbf{r}_{1}\right|+\left|\mathbf{r}-\mathbf{r}_{2}\right|$ is the sum of the distances from (x, y) to P_{1} and P_{2}. Since this sum is constant, the set of points (x, y) represents an ellipse with foci P_{1} and P_{2}. The condition $k>\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ assures us that the ellipse is not degenerate.
48. $W=\mathbf{F} \cdot \mathbf{D}=|\mathbf{F}||\mathbf{D}| \cos \theta=(400)(120) \cos 36^{\circ} \approx 38,833 \mathrm{ft}-\mathrm{lb}$

50. $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$ implies that the vectors $\mathbf{r}-\mathbf{a}$ and $\mathbf{r}-\mathbf{b}$ are orthogonal.

From the diagram (in which A, B and R are the terminal points of the vectors), we see that this implies that R lies on a sphere whose diameter is the line from A to B. The center of this circle is the midpoint of $A B$, that is,
$\frac{1}{2}(\mathbf{a}+\mathbf{b})=\left\langle\frac{1}{2}\left(a_{1}+b_{1}\right), \frac{1}{2}\left(a_{2}+b_{2}\right), \frac{1}{2}\left(a_{3}+b_{3}\right)\right\rangle$, and its radius is
 $\frac{1}{2}|\mathbf{a}-\mathbf{b}|=\frac{1}{2} \sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\left(a_{3}-b_{3}\right)^{2}}$.
Or: Expand the given equation, substitute $\mathbf{r} \cdot \mathbf{r}=x^{2}+y^{2}+z^{2}$ and complete the squares.

Page 1

30. (a) $\overrightarrow{P Q}=\langle-3,2,-1\rangle$ and $\overrightarrow{P R}=\langle 1,-1,1\rangle$, so a vector orthogonal to the plane through P, Q, and R is $\overrightarrow{P Q} \times \overrightarrow{P R}=\langle(2)(1)-(-1)(-1),(-1)(1)-(-3)(1),(-3)(-1)-(2)(1)\rangle=\langle 1,2,1\rangle$ (or any scalar mutiple thereof).
(b) The area of the parallelogram determined by $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ is $|\overrightarrow{P Q} \times \overrightarrow{P R}|=|\langle 1,2,1\rangle|=\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6}$, so the area of triangle $P Q R$ is $\frac{1}{2} \sqrt{6}$.
