Problems from the text (do NOT turn in these problems):
(15.1) 13-18, 23-27, 30-42, 55-60. (15.2) 5-12. (15.3) 5-10, 15-20, 51-56, 70, 74-75. (15.4) 1-6, 11-20, 40, 41, 42. (15.5) 1-12, 21-34, 40.

Problems to turn in:

1. (a) Draw a contour diagram for the function \(f(x, y) = \sqrt{(x - 1)^2 + (y - 2)^2} \). Indicate the contours \(f(x, y) = 1, 2, 3 \) and \(4 \).
(b) Calculate \(\nabla f(2, 3) \) and indicate this vector on your diagram.
(c) Consider \(z = f(x, y) \). Find the equation of the tangent plane to \(f(x, y) \) at the point \((2, 3) \).

2. A function \(z = f(x, y) \) is called harmonic if it satisfies this equation:
\[
\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.
\]
This is called Laplace’s Equation. Determine whether or not the following functions are harmonic:
(a) \(z = \sqrt{x^2 + y^2} \)
(b) \(e^{-x} \sin y \)
(c) \(3x^2y - y^3 \)

3. In each case, give an example of an appropriate function or show that no such function exists.
(a) A function \(f(x, y) \) with continuous second order partial derivatives and which satisfies \(\frac{\partial f}{\partial x} = 6xy^2 \) and \(\frac{\partial f}{\partial y} = 8x^2y \).
(b) A function \(g(x, y) \) satisfying the equations \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 2xy \).

4. Use the appropriate version of the chain rule to compute the following:
(a) \(dw/dt \) at \(t = 3 \), where \(w = \ln(x^2 + y^2 + z^2) \), \(x = \cos t \), \(y = \sin t \), and \(z = 4\sqrt{t} \).
(b) \(\partial z/\partial u \) and \(\partial z/\partial v \), where \(z = xy \), \(x = u \cos v \), and \(y = u \sin v \).

5. Suppose a duck is swimming around in a circle, with position given by \(x = \cos t \) and \(y = \sin t \).
Suppose that the water temperature is given by \(T = x^2e^y - xy^3 \). Find the rate of change in temperature that the duck experiences as it passes through the point \((1/\sqrt{2}, -1/\sqrt{2}) \).
6. Compute the following using implicit differentiation:

(a) \(\frac{\partial y}{\partial z} \) if \(e^{yz} - x^2 z \ln y = \pi \).
(b) \(\frac{dy}{dx} \) if \(F(x, y, x^2 - y^2) = 0 \).

7. The surface plot \(z = f(x, y) \) and the contour diagram are shown:

Look at the point \((2, 2)\). At this point, find the sign (positive or negative) of each of the following quantities:

- \(\frac{\partial f}{\partial x} \)
- \(\frac{\partial f}{\partial y} \)
- \(\frac{\partial^2 f}{\partial x^2} \)
- \(\frac{\partial^2 f}{\partial y^2} \)
- \(\frac{\partial^2 f}{\partial x \partial y} \)

8. Find the equation of the tangent plane to \(z = \sqrt{xy} \) at the point \((1, 1, 1)\).

9. You have three resistors labeled 10Ω, 20Ω and 30Ω. Each of the resistances is guaranteed accurate to within 1%.

 (a) You connect the resistors in series, hoping to get a resistance of 6000Ω. Use differentials to estimate the maximum error in the resistance.

 (b) You connect the resistors in parallel, hoping to get a resistance of \(\frac{60}{11} \)Ω. Use differentials to estimate the maximum error in the resistance.