First Name: ______________________ Last Name: ______________________

Student-No: ______________________ Section: ______________________

Grade:

The remainder of this page has been left blank for your workings.
Very short answer questions

1. 2 marks Each part is worth 1 marks. Please write your answers in the boxes.

Marking scheme: 1 for each correct, 0 otherwise

(a) Find the second-degree Maclaurin polynomial for \(f(x) = 2e^{3x} \).

Answer: \(2 + 6x + 9x^2 \)

Solution: The second-degree Maclaurin polynomial for a function \(f(x) \) is given by

\[
f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.
\]

For \(f(x) = 2e^{3x} \), we have

\[
f(0) = 2, \quad f'(x) = 6e^{3x} \quad \Rightarrow \quad f'(0) = 6, \quad f''(x) = 18e^{3x} \quad \Rightarrow \quad \frac{f''(0)}{2!} = 9.
\]

So the second-degree Maclaurin polynomial for \(f(x) = 2e^{3x} \) is \(2 + 6x + 9x^2 \).

(b) Let \(T_4(x) = 14 + 20(x-2) - 6(x-2)^2 + 10(x-2)^3 + 40(x-2)^4 \) be the fourth-degree Taylor polynomial for a function \(h(x) \) about \(x = 2 \). What is \(h^{(3)}(2) \) (that is, the third derivative of \(h(x) \) at \(x = 2 \))?

Answer: \(h^{(3)}(2) = 60 \)

Solution: By the formula for the \(n \)th Taylor polynomial, the coefficient of the \((x - 2)^3 \) term is given by \(\frac{h^{(3)}(2)}{3!} \). The coefficient of \((x - 2)^3 \) for the given polynomial is 10, so it must be the case that

\[
\frac{h^{(3)}(2)}{3!} = 10 \quad \Rightarrow \quad h^{(3)}(2) = 10 \cdot 3! = 60.
\]
Short answer questions — you must show your work

2. [4 marks] Each part is worth 2 marks.

(a) Estimate $\sqrt{10}$ using a linear approximation.

Solution: Let’s use the first Taylor polynomial for $f(x) = \sqrt{x}$ about $x = 9$, since 9 is close to 10 and we know that $f(9) = 3$. We have

$$T_1(x) = f(9) + f'(9)(x - 9).$$

Now, $f'(x) = \frac{1}{2\sqrt{x}} \implies f'(9) = \frac{1}{6}$. Therefore,

$$f(10) \approx T_1(10) = 3 + \frac{1}{6}(10 - 9) = 3 + \frac{1}{6}.$$

Marking scheme: 2 marks for correct answer with good work. 1 partial mark available for: correct general formula for $T_1(x)$ about any point; slightly incorrect formula but correct derivative and subsequent work.

(b) The first Maclaurin polynomial for $f(x) = 2\sin(x)$ is used to estimate $2\sin(0.1)$. Give and justify an upper bound for the absolute error in this approximation.

Solution: The Lagrange remainder formula with $x = 0.1$ and $a = 0$ says that

$$|R_1| \leq M \frac{|0.1|^2}{2!}.$$

where M is an upper bound for $|f^{(2)}(c)|$ over c in the interval $(0, 0.1)$. Note that

$$|f^{(2)}(c)| = |-2\sin(c)| = 2|\sin(c)| \leq 2,$$

since $\sin(x) \leq 1$ for all real numbers x. Therefore, the absolute error is bounded as follows:

$$|R_1| \leq 2\frac{(0.1)^2}{2} = \frac{2}{200}.$$

Marking scheme: 1 mark for an attempt at using the formula; 1 mark for good justification. It’s possible to come up with a different error bound (with justification) and receive full marks.
Long answer question — you must show your work

3. 4 marks A blimp flying in a horizontal line with constant velocity at an altitude of 3 km passes directly above an observer on the ground at 1PM. One hour later, at 2PM, the blimp has traveled 4 km from the point directly above the observer. In kilometers per hour, what is the rate of change of the distance between the blimp and the observer at 2PM?

Solution:

In the diagram to the right, \(D \) is the distance between the blimp and the observer, and \(x \) is the distance traveled by the blimp after it flies over the observer. Based on this notation, we want to know \(\frac{dD}{dt} \) when \(x = 4 \). The Pythagorean theorem tells us that

\[3^2 + x^2 = D^2. \]

Differentiating, we obtain

\[2x \frac{dx}{dt} = 2D \frac{dD}{dt}. \]

Since the blimp travels 4 km in 1 hour and has constant velocity, we know that \(\frac{dx}{dt} = 4 \). Also, when \(x = 4 \), we have

\[3^2 + 4^2 = D^2 \implies 25 = D^2 \implies D = 5. \]

Therefore, when \(x = 4 \), we have

\[\frac{dD}{dt} = \frac{2 \cdot 8 \cdot 4}{2 \cdot 5} = \frac{64}{10}. \]

So the distance between the observer and the blimp is increasing at a rate of 6.4 km/hr.

Marking scheme:

- 1 mark for starting from correct equation
- 1 mark for correct differentiation with respect to \(t \) (whether equation is correct or not, as long as differentiation is nontrivial)
- 1 mark for a reasonable attempt at identifying unknowns when \(x = 4 \) (i.e. that \(\frac{dx}{dt} = 4 \) and that \(D = 5 \) when \(x = 4 \))
- 1 mark for solving for \(\frac{dD}{dt} \)