4.1: Introduction to Antiderivatives

Question: Given a function \(f(x) \), find a function \(F(x) \) such that \(F'(x) = f(x) \).

Def: A function \(F(x) \) that satisfies

\[
\frac{d}{dx} [F(x)] = f(x),
\]

is called an antiderivative for \(f(x) \).

Notice the "an": If \(F(x) \) is an antiderivative for \(f(x) \), then so is \(F(x) + C \), since \(\frac{d}{dx} [C] = 0 \), for any constant \(C \).

So typically, if we want to find "the most general" antiderivative for \(f(x) \), we write \(F(x) + C \) to represent all possible antiderivatives (the \(C \) represents any constant).
Ex: $f(x) = x^2$. Find the most general antiderivative for $f(x)$.

Sol: Need a function $F(x)$ such that $F'(x) = f(x) = x^2$.

Try $F(x) = x^3$, then $F'(x) = 3x^2$. Need to adjust, to account for the 3; so introduce a constant factor of $\frac{1}{3}$ to $F(x)$.

$F(x) = \frac{1}{3} x^3$. Then $F'(x) = x^2$, great!

So the most general antiderivative for $f(x) = x^2$ is $F(x) = \frac{1}{3} x^3 + C$, where C is my constant.

Ex: Given: $g'(t) = 6t^2$ and $g(2) = 1$. Find $g(t)$.

Sol: Let's find a function $g(t)$ s.t. $g'(t) = 6t^2$.

$g(t) = \frac{6}{3} t^3 + C$. What is C, given $g(2) = 1$.

Ex: Given \(g'(t) = 6t^4 \) and \(g(2) = 1 \), find \(g(t) \).

Sol: Let's find \(g(t) \) so that \(g'(t) = 6t^4 \).

\[g(t) = \frac{6}{5} t^5 + C. \]

What is \(C \), given \(g(2) = 1 \)?

\[1 = g(2) = \frac{6}{5} 2^5 + C \]

\[\Rightarrow C = 1 - \frac{6}{5} 2^5. \]

So \(g(t) = \frac{6}{5} t^5 + 1 - \frac{6}{5} 2^5 \).

Table of Antiderivatives

<table>
<thead>
<tr>
<th>(f(x) = F'(x))</th>
<th>(x^n) ((n \neq -1))</th>
<th>(\cos(x))</th>
<th>(\sin(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(x))</td>
<td>(\frac{x^{n+1}}{n+1} + C)</td>
<td>(\sin(x) + C)</td>
<td>(-\cos(x) + C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f(x) = F'(x))</th>
<th>(\sec^2(x))</th>
<th>(e^x)</th>
<th>(\frac{1}{x})</th>
<th>(\frac{1}{1+x^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(x))</td>
<td>(\tan(x) + C)</td>
<td>(e^x + C)</td>
<td>(\log(x) + C)</td>
<td>(\arctan(x) + C)</td>
</tr>
</tbody>
</table>

etc.
Ex: Find the most general antiderivative for
\[f(x) = \sin(x) + \cos(2x). \]

Sol: Find an antiderivative for \(\sin(x) \) and \(\cos(2x) \) separately, and add them together.

\[\Rightarrow \quad F(x) = -\cos(x) + \frac{1}{2} \sin(2x) + C. \]

Check: \(F'(x) = \sin(x) + \cos(2x) \)

Ex: Find the most general antiderivative for
\[g(x) = \frac{1}{1+4x^2} = \frac{1}{1+(2x)^2}. \]

Sol: Notice that
\[\frac{d}{dx} (\arctan(2x)) = \frac{1}{1+(2x)^2} \cdot 2. \]

So:
\[G(x) = \frac{1}{2} \arctan(2x) + C. \]
Ex: Find an antiderivative for \(f(x) = \frac{1}{1 + x^2 + 2x} \).

So: \(f(x) = \frac{1}{x^2 + 2x + 1} = \frac{1}{(x+1)^2} = (x+1)^{-2} \).

Try: \(F(x) = (x+1)^{-1} \), \(F'(x) = -(x+1)^{-2} \), no good.

Try again: \(F(x) = -(x+1)^{-1} \), \(F'(x) = \) \((x+1)^{-2} \) \(\checkmark \)

So \(F(x) = \frac{-1}{x+1} \) is an antiderivative for \(f(x) \).

Ex: Suppose \(Q(t) \) is the amount of a isotope in a sample. Suppose the sample loses \(50e^{-5t} \) mg per second to decay. If \(Q(1) = 10e^{-5} \) find an equation for the amount of isotope at time \(t \).

So: Given: \(\frac{dQ}{dt} = -50e^{-5t} \) and \(Q(1) = 10e^{-5} \), want to find \(Q(t) \).
Try: \(Q(t) = e^{-st} \) \(\Rightarrow \) \(Q'(t) = -5e^{-st} \), not quite.

Introduce a factor of 10:
\[
Q(t) = 10e^{-st}, \quad \Rightarrow \quad Q'(t) = -50e^{-st}.
\]

\(Q(t) = 10e^{-st} + C \) has the derivative property we want. Also: \(Q(1) = 10e^{-s} \), so:
\[
10e^{-s} = Q(1) = 10e^{-s} + C
\]

\(\Rightarrow \) \(C = 0 \).

So, \(Q(t) = 10e^{-st} \).
Ex: Suppose $f'(t) = 2t + 7$.

What is $f(10) - f(3)$?

Sol: An antiderivative for $f'(t) = 2t + 7$ is

$f(t) = t^2 + 7t + C$, C a constant.

So:

$f(10) - f(3) = 10^2 + 70 + C - (9 + 0 + 21 + C)$

$= 100 + 70 - 9 - 21 = 140$.

Ex: (Final 2012) Find a function $f(x)$ that satisfies $f'(x) = 2 \cos(x) - e^x$ and $f(0) = 0$.

Sol:

$f(x) = 2 \sin(x) - e^x + C$

Check: $f'(x) = 2 \cos(x) - e^x \checkmark$

Now

$0 = f(0) = 2 \sin(0) - e^0 + C$

$\Rightarrow 0 = -1 + C \Rightarrow C = 1$.

$\Rightarrow f(x) = 2 \sin(x) - e^x + 1$.
Ex: Suppose the acceleration of an object at time t is given by $a(t) = 7$. The initial velocity of the object is 100 km/h, and the position of the object is 4 km/h. Find the position function for this object.

Sol: Know: $s''(t) = v'(t) = a(t)$.

Given $a(t) = 7$, $v(t) = 7t + C$.

Since $v(0) = 100$, we see that $C = 100$.

$\Rightarrow v(t) = 7t + 100$.

So: $s(t) = \frac{7}{2} t^2 + 100t + D$

$\Rightarrow s(0) = 4 \Rightarrow \frac{7}{2} \cdot 0 + 100 \cdot 0 + D = 4$

$\Rightarrow D = 4$.

So $s(t) = \frac{7}{2} t^2 + 100t + 4$.