Two more MVT examples

1. Let \(f(x) \) be a function such that \(f(1) = 10 \) and \(-1 \leq f'(x) \leq 2\) for all \(x \). Obtain upper and lower bounds for \(f(5) \).

Solution: By the MVT, there exists \(c \) between 1 and 5 such that \(f'(c) = \frac{f(5) - f(1)}{5 - 1} \)

\[
f'(c) = \frac{f(5) - 10}{4}
\]

Since \(-1 \leq f'(c) \leq 2\) \(\Rightarrow\) \(-1 \leq \frac{f(5) - 10}{4} \leq 2\)

\(-4 \leq f(5) - 10 \leq 8\) \(\Rightarrow\) \(6 \leq f(5) \leq 18\)
2) Prove that \(f(x) = x^3 + x + 1 \) has at most one real root.

To the contrary,

\[S_0 \]: Assume \(f(x) \) has two roots, i.e., there exist two numbers \(a, b \) s.t. \(f(a) = f(b) = 0 \).

\(\Rightarrow \) there exists a point \(c \) between \(a \) and \(b \) s.t. \(f'(c) = 0 \). (MVT) (or Rolle's)

But \(f'(x) = 3x^2 + 1 > 0 \).

\(\Rightarrow f(x) \) has no critical \#s.

But local minima and/or maxima must occur at critical \#s.

So this point \(c \) not not exist \(\Rightarrow \) there can't be two roots.
3.6 Sketching Graphs

G-DAL: Use properties of $f(x)$, $f'(x)$, and $f''(x)$ to sketch an accurate graph of $y=f(x)$.

1) $f(x)$ itself tells you:

- **Domain**: Where is $f(x)$ defined?
- **Intercepts**: Where does $y=f(x)$ cross the axes?
 - *x-intercepts*: Solve $f(x)=0$
 - *y-intercepts*: $f(0)$
- **Vertical asymptotes**: e.g., if $f(x)$ is a rational function, then $y=f(x)$ has vertical asymptotes at the zeros of the denominator.
- **Horizontal asymptotes/end behavior**: the limits
 \[\lim_{x \to \infty} f(x) \text{ and } \lim_{x \to -\infty} f(x) \]
tell you how $f(x)$ behaves for large values of x.

Ex: \(f(x) = \frac{x+1}{(x+3)(x-2)} \)

Domain: all reals except \(x = 2, x = -3 \).

Intercepts:
- **X-intercepts:** \(\frac{x+1}{(x+3)(x-2)} = 0 \) \(\Rightarrow \) \(x = -1 \)
- **Y-intercept:** \(f(0) = \frac{1}{(3)(-2)} = -\frac{1}{6} \) ∈ y-intercept.

Vertical Asymptotes: For \(x \) near 2:
- if \(x > 2 \): \(\frac{x+1}{(x+3)(x-2)} = \frac{(+)}{(+)} \). So \(\lim_{x \to 2^+} f(x) = \infty \)
- if \(x < 2 \): \(\frac{x+1}{(x+3)(x-2)} = \frac{(+)}{(-)} \). So \(\lim_{x \to 2^-} f(x) = -\infty \)

For \(x \) near -3
- if \(x < -3 \): \(\frac{x+1}{(x+3)(x-2)} = \frac{(-)}{(-)} \). So \(\lim_{x \to -3^-} f(x) = -\infty \)
- if \(x > -3 \): \(\frac{x+1}{(x+3)(x-2)} = \frac{(-)}{(+)} \). \(\lim_{x \to -3^+} f(x) = \infty \)

End behavior:
- \(\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0 \)
2. \(f'(x) \) tells you:

- **increasing/decreasing**: if \(f'(x) > 0 \) for all \(A \leq x \leq B \), then \(f(x) \) is increasing on \([A, B]\).

- if \(f'(x) < 0 \) for \(A \leq x \leq B \), then \(f(x) \) is decreasing on \([A, B]\).

- **extrema**: can occur at critical pts (\(f'(x) = 0 \)) or singular points (\(f'(x) \) DNE). Global extrema can occur at endpoints, if applicable.

Ex: \(f(x) = x^4 - 6x^3 \).

- **Domain**: all reals. No asymptotes.

- **Integrals**: \(x^4 - 6x^3 = 0 \) \(\Rightarrow \) \(x^3(x - 6) = 0 \) \(\Rightarrow \) \(x = 0, x = 6 \).

- **y-intercepts**: \(f(0) = 0 \).

- **End behavior**: \(f(x) = x^4 \left(1 - \frac{6x^3}{x^4}\right) \), so \(f(x) \to \infty \) as \(x \to \pm \infty \).

Now look at \(f'(x) = 4x^3 - 18x^2 \):

- \(f'(x) = 0 \) \(\iff \) \(4x^3 - 18x^2 = 0 \) \(\iff \) \(x^2(4x - 18) = 0 \)

 - \(x = 0, x = \frac{9}{2} \) \(\in \) critical pts.
<table>
<thead>
<tr>
<th>Interval/Point</th>
<th>$(-\infty, 0)$</th>
<th>0</th>
<th>$(0, \frac{a}{2})$</th>
<th>$\frac{a}{2}$</th>
<th>$(\frac{a}{2}, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>negative</td>
<td>0</td>
<td>negative</td>
<td>0</td>
<td>positive</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>decreasing</td>
<td>horiz.</td>
<td>decreasing</td>
<td>local min.</td>
<td>increasing</td>
</tr>
</tbody>
</table>

$f'(1) = 1(4-18) < 0$
$f'(5) = 25(20-18) > 0$
\[f''(x) \text{ tells you: Concavity} \]

- Concave Up
 - \(y = f(x) \) lies above all of its tangent lines.

- Concave Down
 - \(y = f(x) \) lies below all of its tangent lines.

\[g(x) \]
Suppose $f(x)$ is continuous on $[a, b]$, and that $f'(x)$ and $f''(x)$ exist on this interval.

- If $f''(x) > 0$ for all x in (a, b), then the graph of f lies above its tangent lines and is said to be \underline{concave up}.

- If $f''(x) < 0$ for all x in (a, b), then the graph of f lies below its tangent lines, and it is said to be \underline{concave down}.

- If $f''(c) = 0$ for some c between a and b, and if the concavity of f changes across $x = c$, then $(c, f(c))$ is called a \underline{inflection point}.

\[\text{Diagram of concave up and concave down with inflection point.}\]
Ex: Determine the concavity of \(f(x) = x^4 - 6x^3 \).

So: \(f'(x) = 4x^3 - 18x^2 \)

\(f''(x) = 12x^2 - 36x \)

Possible points of inflection: \(12x^2 - 36x = 0 \)
\(x(12x - 36) = 0 \)
\(x = 0 \) or \(x = 3 \).

\[
\begin{array}{c|c|c|c|c|c}
\text{Interval/pt.} & (-\infty, 0) & 0 & (0, 3) & 3 & (3, \infty) \\
\hline
f''(x) & \text{positive} & 0 & \text{negative} & 0 & \text{positive} \\
\hline
f(x) & \text{concave up} & \text{inf. pt.} & \text{concave down} & \text{inf. pt.} & \text{concave up} \\
\end{array}
\]

\(f''(-1) = (-1)(-12 - 36) > 0 \)

\(f''(1) = (1)(12 - 36) < 0 \)

\(f''(4) = 4(48 - 36) > 0 \)

\(f(3) = 3^4 - 6(3) \)
\(= 81 - 18 = 63 \)

\(f(\frac{3}{2}) \)

\(f(\frac{3}{2}) \)

\(f(\frac{3}{2}) \)
Symmetry

Def: A function f is called **even** if $f(-x) = f(x)$ for all x.

Def: A function f is called **odd** if $f(-x) = -f(x)$.

Examples:

<table>
<thead>
<tr>
<th>Even Functions</th>
<th>Odd Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>x^3</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>e^{-x}</td>
</tr>
<tr>
<td>$\cos(x)$</td>
<td>$\sin(x)$</td>
</tr>
</tbody>
</table>

Notice: (1) If $f(x)$ is even and (x_0, y_0) is a point on the graph of $y = f(x)$, then:

$f(-x_0) = f(x_0) = y_0$

$\Rightarrow (-x_0, y_0)$ is also a point on $y = f(x)$

\Rightarrow graph is symmetric across the y-axis.
2) If $f(x)$ is odd and (x_0, y_0) is on the graph of $y = f(x)$,

$$f(-x_0) = -f(x_0) = -y_0.$$

\Rightarrow $(x_0, -y_0)$ is on the graph of $y = f(x)$

\Rightarrow graph is "symmetric about the origin"
Ex: \[g(x) = \frac{x^2 - 9}{x^2 + 3} \] (Note: \(g(x) \) is even)

Domain: all reals

Intercepts: \[\frac{x^2 - 9}{x^2 + 3} = 0 \iff x^2 - 9 = 0 \iff x = \pm 3, \]

\[g(0) = \frac{-9}{3} = -3 \]

No vert. asympt.

Horizontal asymptotes: \[\lim_{x \to \infty} g(x) = \lim_{x \to -\infty} g(x) = 1 \]

\[g'(x) = \frac{2x(x^2 + 3) - 2x(x^2 - 9)}{(x^2 + 3)^2} \quad \text{No sing. pts.} \]

Critical pts: \[2x(x^2 + 3) - 2x(x^2 - 9) = 0 \]

\[2x(3x^2 + 3 - (x^2 - 9)) = 0 \]

\[2x(12) = 0 \iff x = 0 \]

<table>
<thead>
<tr>
<th>interval/pt</th>
<th>((-\infty, 0))</th>
<th>0</th>
<th>((0, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td>neg.</td>
<td>0</td>
<td>pos.</td>
</tr>
<tr>
<td>(g'(x))</td>
<td>dec.</td>
<td>local min.</td>
<td>inc.</td>
</tr>
</tbody>
</table>

\[g(0) = -3 \]
\[g'(x) = \frac{24x}{(x^2 + 3)^2} \]
\[g''(x) = \frac{24(x^2 + 3)^2 - 24x \cdot 2(x^2 + 3) \cdot 2x}{(x^2 + 3)^4} \]

Possible infl. pts.
\[24(x^2 + 3)^2 - 96x^2(x^2 + 3) = 0 \]
\[24(x^2 + 3)\left((x^2 + 3) - \frac{4}{6}x^2\right) = 0 \]
\[(x^2 + 3) - \frac{4}{6}x^2 = 0 \]
\[-3x^2 + 3 = 0 \]
\[x^2 = 1 \]
\[x = \pm 1 \]

<table>
<thead>
<tr>
<th>intervals/pt</th>
<th>(-\infty, -1)</th>
<th>-1</th>
<th>(-1, 1)</th>
<th>1</th>
<th>(1, \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g''(x))</td>
<td>neg.</td>
<td>0</td>
<td>pos</td>
<td>0</td>
<td>neg.</td>
</tr>
<tr>
<td>(g'(x))</td>
<td>concave down</td>
<td>PoI</td>
<td>concave up</td>
<td>PoI</td>
<td>concave down</td>
</tr>
<tr>
<td>(g(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[s(1) = \frac{1 - 9}{1 + 3} = \frac{-8}{4} = -2 \]