
Adaptations of Newton’s Method
UBC Math 604 Lecture Notes by Philip D. Loewen

Preamble. The quadratic convergence of Newton’s method for minimization is guar-
anteed only for initial points sufficiently near a critical point satisfying certain hy-
potheses. For for starting points far from the minimizer, or in the absence of these
conditions, Newton’s method may stall (as on f(x) = |x|3/2) or even diverge (as on
f(x) = x tan−1 x− 1

2
ln(1 + x2)). (Note that both these functions of one variable are

strictly convex, with unique global minimizers at the origin). So we work toward a
hybrid method that combines

• guaranteed progress [perhaps slow] from arbitrary points;

• rapid, Newton-like convergence from points sufficiently near a well-conditioned
minimizer.

The iteration framework runs like this, from xk:

1. Decide if xk is an acceptable approximation to the desired minimizer. If so, quit;
otherwise, continue with Step 2.

2. Use current information to evaluate Hk, a positive-definite symmetric matrix to
use in the “model”

mk(x) = f(xk) +∇f(xk)(x− xk) + 1
2
(x− xk)THk(x− xk).

(Classic Newton’s Method just uses Hk = D2f(xk), but Hk > 0 must be as-
sumed . Taking Hk = I for all k gives the famous Steepest Descent Method,
discussed below.)

3. Minimize mk(xk + v) over all v analyticcally: the solution vk is characterized by

Hkvk = −∇f(xk)T . (1)

Call vk the “search direction”.

4. Step to the new point
xk+1 = xk + tkvk

for some well-chosen tk > 0 (the “step length”).

A. Descent Directions

Descent Directions. “Progress” in minimizing f from a starting point xk might be
defined as a decrease in function value at the next step:

f(xk+1) < f(xk).

For a given vector v, the first-order approximation

f(xk + tv) ≈ f(xk) +∇f(xk) (tv) , t→ 0

indicates that f(xk + tv) < f(xk) for all t > 0 sufficiently small will guaranteed if

f ′(x; v) = ∇f(xk)v < 0.

Any v satisfying this condition is called a (first-order) descent direction for f at xk.

File “quasinew”, version of 25 January 01, page 1. Typeset at 09:57 January 25, 2001.

2 PHILIP D. LOEWEN

Note. Insisting that the vk determined by (1) should be a descent direction leaves
plenty of choice for the matrix Hk we must build in Step 2. In fact, for any Hk =
HT
k > 0, the direction vk defined in (1) will be a descent direction, since

∇f(xk)vk = ∇f(xk)
[
−H−1

k ∇f(xk)T
]

= −∇f(xk)H−1
k ∇f(xk)T < 0. (∗)

(Recall that Hk > 0 iff H−1
k > 0.) Different schemes for producing Hk include . . .

(i) Always choose Hk = I. This is of some theoretical interest, because it
gives the famous “Method of Steepest Descent.” This method, sketched
below, will converge to a critical point of f under mild hypothesis, but the
convergence can be painfully slow.

(ii) Decide beforehand on some constant m > 0. Compute the Hessian D2f(xk)
exactly. Then use Hk = D2f(xk)+µkI, where µk ≥ 0 is chosen to guarantee
that Hk−mI is positive definite. Here m > 0 is a small offset that provides
a uniform margin of nonsingularity for all the matrices Hk. For iterates
xk near a critical point x̂ for which D2f(x̂) > mI, the choices µk = 0 will
eventually start to work, and the iterates will be constructed according to
the classical Newton scheme.

(iii) Find a systematic way to approximate D2f(xk) using only values of ∇f
observed in earlier steps. We will study this prospect in detail in a later
section.

B. Inexact Line Search

At current point xk, suppose the vector vk 6= 0 is known to be a descent direction.
How far in this direction should we move before settling on xk+1? To help decide,
consider the scalar function

φk(t) = f(xk + tvk)− f(xk), t ∈ R.

Note that φk(0) = 0, φ′k(0) < 0. In exact line search, we choose tk to minimize φ
over (0,+∞). This is useful in some contexts, but for Newton-based methods, it is
more efficient to do something much less demanding.

Armijo’s Rule. Fix a parameter c1 in (0, 1) [typically c1 = 10−4 for Newton-type
methods] and consider this inequality:

φ(t) ≤ c1tφ′(0). (D)

The t-values satisfying (D) are those whose function values lie below a straight line
that slopes downward more gently than the function φ does at the origin. A de-
scriptive name for (D) is the “sufficient decrease condition,” also known as Armijo’s
rule. Notice that larger t-values in [0, 1] are preferable, because they correspond to
greater predicted decreases in φ.

File “quasinew”, version of 25 January 01, page 2. Typeset at 09:57 January 25, 2001.

Adaptations of Newton’s Method 3

Picture Here

There are two common implementations of Armijo’s rule, both involving param-
eters λ in (0, 1) and k∗ in Z. These conspire to produce the set in which we will look
for t:

Λ =
{
λk : k ≥ k∗

}
.

Notice that the numbers λk decrease to 0 as k →∞, so

(i) smaller k-values in Λ correspond to preferable choices of t in (D);

(ii) Inequality (D) is true for t = λk for all k sufficiently large, by definition of the
derivative.

One simple way to get a good t-value, then, is just to test t = λk in (D) for
successive values of k = k∗, k∗+ 1, . . . until you find an exponent that works. This is
easy to program and guaranteed to terminate with the largest eligible t in Λ after a
finite number of steps. In practice, though, it may require too many evaluations of
φ.

A less computationally demanding modification of the basic approach is to settle
for any point t in Λ where (D) holds, but for which the next larger choice violates (D).
That is, we seek a point t = λk such that both

(A) φ
(
λk
)
≤ c1λkφ′(0),

(B) Either k = k∗ or φ
(
λk−1

)
> c1λ

k−1φ′(0).

With this stipulation, it is not necessary to search the set Λ starting with the largest
element. (If you do, you will end up with the same k-value generated in the previous
paragraph, produced for exactly the same amount of computing effort.) Instead,
Polak suggests the following procedure.∗ Start with some trial exponent ktrial ≥ k∗:
set k = ktrial, and then

Test (A) and (B):
If both are true, then select t = λk.
If (A) is false, move to the left,

i.e., replace k with k + 1 and repeat the test.
If (A) is true but (B) is false, move to the right,

i.e., replace k with k − 1 and repeat the test.

The origins of ktrial are somewhat ad-hoc: in a situation where repeated ap-
plications of Armijo’s step-size rule take place, Polak suggests using ktrial = k∗ on
the very first try, and subsequently setting ktrial to the k-value used successfully on
the previous step. (He cautions that if this produces a run of uncomfortably large
k-values, it may be wise to restart with ktrial = k∗ at some intermediate time.)

In original variables, the sufficient decrease condition central to Armijo’s rule

∗ This is not quite what Polak (Subprocedure 1.2.23a) says: his tests do not pre-
scribe an action when both (A) and (B) are false. The modification above evidently
makes sense, but is there something better one could do?

File “quasinew”, version of 25 January 01, page 3. Typeset at 09:57 January 25, 2001.

4 PHILIP D. LOEWEN

takes the form
f(xk + tvk)− f(xk) ≤ c1t∇f(xk)vk. (∗∗)

Lemma. Let c1 ∈ (0, 1/2) be fixed. If f :Rn → R has a critical point at x̂ and
satisfies the conditions of the convergence theorem for Newton’s method, then there
is an open ball centred at x̂ in which the Newton Direction vk satisfies (∗∗) with
t = 1.

Proof. (Sketch.) Pick any xk in the ball identified in the cited convergence theorem.
Use Hk as shorthand for D2f(xk), and recall the Newton step

vk = −H−1
k ∇f(xk)T .

Then

f(xk + vk) ≈ f(xk) +∇f(xk)vk + 1
2v
T
kHkvk

≈ f(xk) + c1∇f(xk)vk + (1− c1)∇f(xk)
[
−H−1

k ∇f(xk)T
]

+ 1
2∇f(xk)H−1

k HkH
−1
k ∇f(xk)T

≈ f(xk) + c1∇f(xk)vk + (c1 − 1
2
)vTkHkvk.

Note that c1 − 1
2
< 0 by hypothesis and Hk > 0, so the last term on the right side is

negative. This proves the desired inequality. ////

The Wolfe Conditions. Given a function φ: [0,∞)→ R with φ(0) = 0, φ′(0) < 0,
we want to choose a good step length tk > 0. The Wolfe conditions help. They are
set up using two user-specified constants, 0 < c1 < c2 < 1.

• Armijo Rule [enforces Sufficient Decrease]:

φ(tk) ≤ φ(0) + c1φ
′(0)tk. (D)

• Curvature Condition: Insist that φ′(tk) has increased somewhat from its
initial value φ′(0), via

φ′(tk) ≥ c2φ
′(0). (C)

Idea: If φ′(t) is still close to φ′(0), the rate of decrease at t is still quite good,
so we should increase t. Note that if φ′(tk) ≤ 0, this condition is equivalent
to

|φ′(tk)| ≤ c2|φ′(0)|. (C+)

Using (C+) even when φ′(tk) ≥ 0 makes some sense: a strongly positive
value of φ′(tk) indicates that tk falls on a steep uphill slope, and is likely
too large.

Together, the sufficient decrease and curvature conditions are called the Wolfe
Conditions:

Wolfe Conditions:
Strong Wolfe Conditions:

(D)+(C)
(D)+(C+)

File “quasinew”, version of 25 January 01, page 4. Typeset at 09:57 January 25, 2001.

Adaptations of Newton’s Method 5

C. Descent Methods and Their Convergence

Steepest Descent. Using Hk = I at every step of the general framework outlined
earlier produces the search direction vk = −∇f(xk). As shown above, this vk points
in the direction where the best linear approximation to f based at xk predicts the
most rapid decrease. Thus the classical “steepest descent method” updates the cur-
rent point xk as follows:

Introduce vk = −∇ f(xk)T , the steepest descent direction from xk
Choose tk > 0 to minimize (exactly) t 7→ f(xk + t vk).
Define xk+1 = xk + tk vk.

It can be very slow even on purely quadratic problems when the relative scaling of
the variables is poor. (See zig-zag picture in Numerical Recipes, with associated
explanation; contrast the fact that Newton’s method gets the right answer in a single
step on all quadratic problems.) Choosing tk using inexact line search as described
above just makes it slower.

Still, the steepest descent direction is an important benchmark for assessing the
rate of decrease associated with other directions. Suppose vk in Rn is a proposed
search direction at the current point xk. Let θk ∈ [0, π] be the (smaller) angle between
vk and −∇f(xk), defined by

−∇f(xk)vk = ‖∇f(xk)‖‖vk‖ cos θk, i.e., cos θk = − ∇f(xk)vk
‖∇f(xk)‖‖vk‖

.

Here is a theoretical basis for showing some respect for the steepest descent
method:

Theorem. Given x0 ∈ Rn and a function f :Rn → R, suppose that there exist a
constant L > 0 and an open set Ω containing {x ∈ Rn : f(x) ≤ f(x0)}, such that

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ ∀x, y ∈ Ω.

Then for any sequences of trial points xk ∈ Rn, step lengths tk > 0, and search
directions vk ∈ Rn, related by

(i) f ′(xk; vk) < 0 always (each vk is a descent direction at xk),

(ii) xk+1 = xk + tkvk (each update is a step in direction vk), and

(iii) each tk obeys the Wolfe Conditions,

one has
∞∑
k=0

(‖∇f(xk)‖ cos θk)2
< +∞. In particular, ∇f(xk) cos θk → 0 as k →∞.

Note. In the Steepest Descent method, we choose vk = −∇f(xk). This obeys (i)–(ii)

automatically, and θk = 0 for all k. The conclusion reduces to
∞∑
k=0

(‖∇f(xk)‖)2
<

File “quasinew”, version of 25 January 01, page 5. Typeset at 09:57 January 25, 2001.

6 PHILIP D. LOEWEN

+∞, which implies ∇f(xk)→ 0 as k →∞. So although Steepest Descent is slow in
practice, it is sure to produce plenty of nearly-critical points eventually. Inexact line
search is just fine for this theoretical conclusion.

The desirable outcome ‖∇f(xk)‖ → 0 turns up even if all we know is that there
is some constant ε > 0 such that cos θk ≥ ε for all k. In this case, the squeeze theorem
gives ε‖∇f(xk)‖ → 0. So as long as our search directions lie in some kind of rather
blunt cone directed along the steepest descent direction, we can expect convergence.

Proof. Rewrite the Wolfe conditions in terms of the original function:

f(xk + tkvk) ≤ f(xk) + c1∇f(xk)tkvk (D)
∇f(xk + tkvk)vk ≥ c2∇f(xk)vk (C)

By the Lipschitz condition and (C),

tkL‖vk‖2 ≥ ‖∇f(xk + tkvk)−∇f(xk)‖‖vk‖
≥ (∇f(xk+1)−∇f(xk)) vk
≥ (∇f(xk+1)vk − c2∇f(xk)vk) + (c2 − 1)∇f(xk)vk
≥ (c2 − 1)∇f(xk)vk.

This gives

tk ≥
c2 − 1
L

∇f(xk)vk
‖vk‖2

.

Use this in (D): for a suitable definition of M ,

f(xk+1) ≤ f(xk)− c1
(

1− c2
L

)
(∇f(xk)vk)

2

‖vk‖2
= f(xk)−M (∇f(xk) cos θk)

2
.

Sum both sides from k = 0 to k = N , then cancel:

f(xN+1) ≤ f(x0)−M
N∑
k=0

(∇f(xk) cos θk)
2
.

This gives

N∑
k=0

(∇f(xk) cos θk)
2 ≤ f(x0)− f(xN+1)

M
≤ f(x0)− inf(f)

M
(assumed finite).

Since RHS is indep of N , taking limit as N →∞ gives the result. ////

Globalization. The good feature of the theorem above is that it makes no require-
ment that x0 should be anywhere near a true (local) minimum point x̂. Hence a
method obeying the hypotheses outlined above will converge from any starting point.
This is called “global convergence,” and it’s obviously a good thing. [Caution: It’s
not the same as finding a “global minimum.”]

File “quasinew”, version of 25 January 01, page 6. Typeset at 09:57 January 25, 2001.

Adaptations of Newton’s Method 7

D. Secant Methods

Derivation. In the model Newton algorithm above, the choice of Hessian approxima-
tion Hk in Step 3 makes a big difference. In the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method, we choose Hk+1 to make sure that the quadratic model

mk+1(x) = f(xk+1) +∇f(xk+1)(x− xk+1) + 1
2 (x− xk+1)THk+1(x− xk+1)

matches the gradient of the true objective f at both xk and xk+1. Now

∇mk+1(x) = ∇f(xk+1) + (x− xk+1)THk+1,

so ∇mk+1(xk+1) = ∇f(xk+1) is easy. But forcing ∇mk+1(xk) = ∇f(xk) leads to

∇f(xk+1)T −∇f(xk)T = Hk+1 (xk+1 − xk) . (S)

This is the secant condition.

(Another derivation of (S) uses linear approximation: knowing xk and Hk gives
us a point xk+1 where we can calculate ∇f(xk+1). Linear approximation suggests

∇f(xk)−∇f(xk+1) ≈ D2f(xk+1) (xk − xk+1) .

Condition (S) suggests that we choose Hk+1 to give equality here.)

Here we have n equations to determine the n2 unknown components of Hk+1.
Other considerations restrict our freedom somewhat:

(i) Hk+1 should be symmetric (so only n(n+1)/2 elements are open for choice)
and positive definite (imposing n additional inequalities, on the eigenvalues);

(ii) Hk+1 should not be too far from Hk.

Curvature Conditions. If (S) has a positive-definite solution for Hk+1, multiplying
on the left by (xk+1 − xk)T will give

(xk+1 − xk)T (∇fk+1 −∇fk)T = (xk+1 − xk)THk+1(xk+1 − xk) > 0. (2)

So positivity of the left side is an absolute prerequisite for (S) to have any solution at
all. Fortunately, (2) is automatic if the sequence . . . , xk, xk+1, . . . satisfies the Wolfe
Conditions. Recall that these involve 0 < c1 < c2 < 1, and require both

∇f(xk+1)(xk+1 − xk) ≥ c2∇f(xk)(xk+1 − xk), (C)

i.e.,
(∇f(xk+1)−∇f(xk))(xk+1 − xk) ≥ (c2 − 1)∇f(xk)(xk+1 − xk),

and that xk+1 − xk be a descent direction for f at xk. This makes the right side
positive.

File “quasinew”, version of 25 January 01, page 7. Typeset at 09:57 January 25, 2001.

8 PHILIP D. LOEWEN

Derivation of the BFGS Update. To smooth the derivation, let’s simplify the
notation:

H0: the current approximate Hessian, obeying H0 = HT
0 > 0. This could come

from anywhere.

s: xk+1 − xk, the most recent step in the method.

y: ∇f(xk+1)T −∇f(xk)T , the change in gradient (as a column).

H: Hk+1, the new approximate Hessian we are to construct.

We assume yT s > 0.

Eventually we will get

H = H0 +
1
yT s

[
yyT

]
− 1
sTH0s

[
H0ss

TH0

]
.

The assumption that yT s > 0 makes H well-defined. Clearly H = HT (each sum-
mand is symmetric), and direct calculation confirms that Hs = y.

Here are the details. A matrix H is symmetric and positive-definite if and only if
it can be decomposed as H = J2 for some matrix J = JT > 0. (This decomposition
clearly implies that H = HT > 0; given H = HT > 0, orthogonal diagonalization
of H is possible, and leads easily to a suitable proposal for J .) So one way to solve
Hs = y is to split it into a pair of linear systems, with a new variable v: we seek an
invertible matrix J for which J2s = y, i.e.,

(3) Jv = y where (4) v = Js 6= 0.

If v were known, a simple matrix J satisfying (3) would be
1
vT v

(yvT). More generally,
one could start with any invertible matrix J0 and use

J =
1
vT v

(
yvT

)
+ J0 −

1
vT v

(J0v) vT

= J0 +
1
vT v

(y − J0v) vT .

But v is not known—it’s a choice parameter that yields J according to the recipe
just proposed. For a J of this form to fulfill our needs, we must have

v = JT s =
(
JT0 +

1
vT v

v (y − J0v)
T

)
s

= JT0 s+
(y − J0v)

T
s

vT v
v

This can only happen if v and JT0 s are parallel, i.e., if v = αJT0 s for some real α.
Substitution provides a vector equation in which each term is a scalar multiple of
JT0 s—a vector that is nonzero because J0 is invertible and s 6= 0:

αJT0 s = JT0 s+

(
y − αJ0J

T
0 s
)T
s

α2
(
sTJ0J

T
0 s
) (

αJT0 s
)
.

File “quasinew”, version of 25 January 01, page 8. Typeset at 09:57 January 25, 2001.

Adaptations of Newton’s Method 9

Now a good choice for J0 would be to make H0 = J0J
T
0 . Then equating coefficients

of JT0 s above produces the scalar equation

α = 1 +
yT s

α (sTH0s)
− 1, i.e., α2 =

yT s

sTH0s
.

The denominator here is positive because J0 is invertible, and the numerator is
positive by hypothesis. Thus this equation has two solutions for α, for either one, we
can trace our steps backwards to build up J : with v = αJT0 s, we have

vT v = α2
(
sTH0s

)
= yT s

J0v = αH0s,

J = J0 +
α

yT s
(y − αH0s) sTJ0 = J0 +

α

yT s
ysTJ0 −

1
sTH0s

H0ss
TJ0.

[At this point, Dennis and Schnabel choose the positive root for α, and assert that
the invertibility of J is evident.] To recover an explicit formula for H, we expand
H = JJT : this generates three “square terms” and three pairs of “mixed terms” as
follows:

JJT = J0J
T
0 +

(
α

yT s

)2

ysTJ0J
T
0 sy

T +
(

1
sTH0s

)2

H0ss
TJ0J

T
0 ss

TH0

+
(

α

yT s

)(
J0J

T
0 sy

T + ysTJ0J
T
0

)
−
(

1
sTH0s

)(
J0J

T
0 ss

TH0 +H0ss
TJ0J

T
0

)
−
(

α

(yT s) (sTH0s)

)(
H0ss

TJ0J
T
0 sy

T + ysTJ0J
T
0 ss

TH0

)
Recalling H0 = J0J

T
0 and recognizing the corresponding product sTJ0J

T
0 s = sTH0s

as a (positive) scalar, we find that the second and fourth lines in this equation cancel,
while the third line can be combined with the last term of the first. The result is

H = H0 +
1
yT s

[
yyT

]
− 1
sTH0s

[
H0ss

TH0

]
.

As part of the development below we will provide an explicit formula for H−1 in
terms of H−1

0 ; this will confirm the invertibility of H and complete the proof. ////

BFGS (Basics). The proof above contains several key results. We look first at the
formula

H = H0 +
1
yT s

[
yyT

]
− 1
sTH0s

[
H0ss

TH0

]
.

Given any vectors s and y with yT s > 0, and any symmetric, positive-definite matrix
H0, this formula generates a symmetric, positive-definite matrixH for which Hs = y.

File “quasinew”, version of 25 January 01, page 9. Typeset at 09:57 January 25, 2001.

10 PHILIP D. LOEWEN

In the context of a quasi-Newton iteration, using the current approximation Hk for
the Hessian as the seed value produces the updated approximate Hessian

Hk+1 = Hk +
1
yT s

[
yyT

]
− 1
sTHks

[
Hkss

THk

]
,

where s = xk+1 − xk, y = (∇f(xk+1)−∇f(xk))
T
.

This is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule, and it is the
most effective general-purpose scheme in practice.

Additional theoretical effort, based on the next lemma, can streamline the pro-
cess of solving a linear system in which Hk+1 is the coefficient matrix.

Sherman-Morrison Formula. Given an invertible matrix A in Rn×n and two
vectors a, b ∈ Rn the sum P = A + abT is invertible if and only if bTA−1a 6= −1; in
this case,

P−1 = A−1 − 1
1 + bTA−1a

[
A−1abTA−1

]
.

Proof. (⇐) If bTA−1a 6= −1, then the expression on the right side of the displayed
equation is well-defined. Just multiplying this expression by P produces the identity
matrix, so P must be invertible and the given expression must be its inverse. (The
key to success here is recognizing that bTA−1a is a scalar, even when it shows up
in the middle of a long matrix product in the expansion of the product mentioned
above.)

(⇒) If bTA−1a = −1, then certainly a 6= 0; consequently w
def
= A−1a is nonzero.

But
Pw =

[
A+ abT

]
A−1a = a+ a

(
bTA−1a

)
= a− a = 0.

Hence P cannot be invertible. ////

Remark. In general
(
A−1

)T =
(
AT
)−1 = A−T . If A is symmetric, it follows that

A−T = A−1, so the Sherman-Morrison formula can be reorganized into a sum of A−1

with a transformed dyad:[
A+ abT

]−1
= A−1 − 1

1 + bTA−1a

(
A−1a

) (
A−1b

)T
.

BFGS (Improved). The BFGS update rule for approximate hessians builds Hk+1

from Hk by adding two dyads. Hence two applications of the Sherman-Morrison
formula will allow us to express Wk+1

def
= H−1

k+1 in terms of Wk
def
= H−1

k and the
vectors in these dyads. Carrying this calculation forward takes some care (exercise!),
and produces

Wk+1 = Wk +
sT y + yTWky

(sT y)2

[
ssT
]
− 1
sT y

[
Wkys

T + syTWk

]
,

where s = xk+1 − xk, y = (∇f(xk+1)−∇f(xk))
T
.

File “quasinew”, version of 25 January 01, page 10. Typeset at 09:57 January 25, 2001.

Adaptations of Newton’s Method 11

This observation will speed up the implementation of a BFGS Quasi-Newton
method. Recall that in Step 3 of the general framework, we must find the search
direction vk from point xk by solving the linear system

Hkvk = −∇f(xk)T .

The equivalent expression vk = −H−1
k ∇f(xk)T is dangerous if it deceives the unwary

into computing H−1
k numerically, but it’s just fine when—like now—a tidy formula

for H−1
k is available. So the search directions can be found easily using

vk = −Wk∇f(xk)T

for the sequence of approximate inverse Hessians Wk generated above. The only
matrix inversion required is the computation of W0 = H−1

0 , and in many implemen-
tations the matrix H0 is so simple that W0 can be found quickly and easily.

DFP. A second reasonable update rule arising from similar principles is the Davidon-
Fletcher-Powell (DFP) scheme. One way to produce this is to apply the construction
in the Lemma above directly to the problem of producing H−1. Given vectors y and
s with yT s > 0, the equation Hs = y is equivalent to s = H−1y. Write this as
H̃s̃ = ỹ for H̃ = H−1, s̃ = y, and ỹ = s, and the lemma ensures that any nonsingular
H̃0 will produce a positive-definite, symmetric H̃ via

H̃ = H̃0 +
1
ỹT s̃

[
ỹỹT

]
− 1

s̃T H̃0s̃

[
H̃0s̃s̃

T H̃0

]
.

Writing Wk+1 = H̃, Wk = H̃0, and simplifying the notation for s̃ and ỹ, we have

Wk+1 = Wk +
1
sT y

[
ssT
]
− 1
yTWky

[
Wkyy

TWk

]
.

With the same choices for s and y as before, this is the DFP updating formula for
the inverse approximate Hessian; two applications of the Sherman-Morrison formula
give the corresponding formula for updating the Hessian itself:

Hk+1 = Hk +
yT s+ sTHks

(yT s)2

[
yyT

]
− 1
yT s

[
Hksy

T + ysTHk

]
.

Notice the symmetry between the DFP formula for updating H and the BFGS for-
mula for updating W = H−1.

Self-Correcting. BFGS tends to compensate for bad initial approximations for the
Hessian. Experimental evidence shows that it does a better job at this than DFP,
and the experts think that this explains why it seems to work better in practice.

File “quasinew”, version of 25 January 01, page 11. Typeset at 09:57 January 25, 2001.

12 PHILIP D. LOEWEN

Practical Matters—Updating. There are some cases where changing the approx-
imate Hessian is a waste of time because the current approximation is good enough.
Test for this by recalling the user’s convergence tolerance η1 > 0 for the x-values. If
each component of the residual y −Hks is smaller than η1 (|∇f(xk)|+ |∇f(xk+1)|)
[the estimated noise in the corresponding component], just update Hk+1 = Hk.

The BFGS update is sure to work if the Wolfe Conditions are satisfied. Typ-
ical choices for the parameters are c1 = 10−4, c2 = 0.9. Our backtracking Armijo
rule confirms only the descent condition (D), not the curvature condition (C). Best
remedy: a better approximate line search that enforces both.

Ad-hoc approaches—use one or both of these for HW03. Assume the usual
situation: We’re at stage k. We know xk and Hk, and we have used them to find
xk+1 using some kind of line search. We’re ready to start stage k + 1. Our notation
is

y = (∇f(xk+1)−∇f(xk))
T
, s = xk+1 − xk.

1. Skipping (Not Great).

• If yT s ≤ √εmachine‖y‖2 ‖s‖2, update Hk+1 = Hk.

• Otherwise, get Hk+1 (or, better, Wk+1) from the BFGS or DFP updating
formula given above.

[Problem: This might set Hk+1 = Hk over and over again many times, so the
curvature information being collected never gets used.]

2. Damping (better). Define qk = (0.2)sTHks. Note that qk > 0. Build

θk =

 1, if sT y ≥ qk,

0.8
sTHks

sTHks− sT y
, if sT y < qk.

Then let
rk = θkyk + (1− θk)Hksk

and update

Hk+1 = Hk +
1
rT s

[
rrT

]
− 1
sTHks

[
Hkss

THk

]
.

This is the same update formula as for BFGS, only we have changed yk to rk
everywhere. [Advantage: This always uses the curvature info at least a little.]

This strategy interpolates between the unmodified BFGS update (which it selects
whenever θk = 1, i.e., sT y is positive and reasonably big), and the do-nothing
choice Hk+1 = Hk (which would correspond to θk = 0). Note that sT r > 0 in all
cases (exercise!), so the update formula above does produce a positive-definite
matrix at every step.

Convergence. Superlinear convergence is expected under reasonable hypotheses.
The proofs in the literature do assume Lipschitz continuity of D2f to establish this,
though, in spite of the fact that the algorithm uses only first derivatives. The moti-
vation for the algorithm makes this not completely surprising.

File “quasinew”, version of 25 January 01, page 12. Typeset at 09:57 January 25, 2001.

Adaptations of Newton’s Method 13

E. Starting

To get the algorithm moving we need some matrix to use for H0 = HT
0 > 0. One

could use an exact Hessian, a numerically-approximated Hessian, or do something
much simpler: just pick

H0 = βI (W0 = H−1
0 = β−1I).

Ideally β should be related somehow to the typical size of f . HW03 says choose
β = |f(x0)|, which is not so smart. It’s better to ask the user to guess how long the
first Newton step ought to be, call this value δ, then choose

β =
δ

‖∇f(x0)‖
.

For an even better start, Nocedal and Wright (pp. 200-201) suggest a modified BFGS
update on the first step only. (This is a “heuristic”—i.e., a good idea that often works,
but does not have a rock-solid theoretical justification applicable in all cases.) After
using H0 = βI to compute x1, and define y1 and s1 as above, they replace H0 with
b̃I, for

β̃ =
(
yT1 s1

yT1 y1

)
,

before applying the update rule (BFGS) to generate H1.

F. Stopping and Scaling

Reasonable stopping tests should be independent of the scale of both the variables x
and the function values f . Hints were provided on Assignment 2: these need only to
be modified by safeguarding them against division by zero.

Iteration should stop after the computation of a new point xk+1 either if

(i) This point is very close to the previous point xk, i.e., for some (user-specified)
tolerance η1,

max
i=1,...,n

|(xk+1)i − (xk)i|
max {|(xtyp)i|, |(xk)i|}

≤ η1.

On the left is the largest relative error among all components.

(ii) The gradient is nearly zero, i.e., for some (user-specified) tolerance η2,

max
i=1,...,n

|∇f(xk+1)i(xk+1)i|
max {|ftyp|, |f(xk+1)|}

≤ η2,

The left side measures the largest relative slope among all components.

(iii) Time and money have run out, i.e., for some (user-specified) maximum number
of iterations Kmax,

k + 1 ≥ Kmax.

File “quasinew”, version of 25 January 01, page 13. Typeset at 09:57 January 25, 2001.

