1. An airplane must fly between two cities separated by a distance \(D \). The cost of flying a distance (arc length) \(ds \) at an altitude \(h \) equals \(\exp(-h/H) \) \(ds \), where \(H > 0 \) is a given constant. Find the only possible candidate for the cheapest flight path. (Make the flat-earth approximation.)

BONUS: Taking \(H = 1 \), describe and sketch the infimum cost as a function of \(D > 0 \). (Assume your candidate gives the minimum cost.)

2. Find the form of the vector-valued extremals for these variational integrals:

 (a) \(\int [\dot{x}(t)^2 + \dot{x}(t)\dot{y}(t) + \dot{y}(t)^2] \, dt \).

 (b) \(\int [\dot{x}(t)^2 - \dot{y}(t)^2 + 2x(t)y(t) - 2x(t)^2] \, dt \).

3. [Tricksy.] Solve the following problem, show that the answer is not unique, and discuss:

 Find a cubic polynomial that provides a global minimum for the functional

 \[\Lambda[x] := \int_0^1 \left(\frac{9}{4} t^2 x(t)^4 + 3t^3 x(t)^3 \dot{x}(t) \right) \, dt \]

 subject to the endpoint requirements \(x(0) = 0 = x(1) \).

4. Suppose (only) that \(P: [a, b] \to \mathbb{R} \) is continuous. Prove that the following are equivalent (TFAE):

 (a) \(\int_a^b P(t)\ddot{h}(t) \, dt = 0 \) for each “variation” \(h \in C^2([a, b]) \) satisfying

 both \(h(a) = 0 = h(b) \) and \(\dot{h}(a) = 0 = \dot{h}(b) \).

 (b) \(P(t) = mt + c \) for some constants \(m \) and \(c \).

 Caution: The set of all arcs \(k \overset{\text{def}}{=} \ddot{h} \) generated by variations as described in (a) is a proper subspace of \(V_{II} \). (Reason: Every such \(k \) obeys \(\int_a^b k(r) \, dr = 0 \), but many elements of \(V_{II} \) do not.) Therefore this problem cannot be solved simply by substituting \(k = \ddot{h} \) and citing the lemma of DuBois-Reymond. A more direct approach, extending the proof of DuBois-Reymond’s Lemma, will be needed.

5. Let \(X = C^2[a, b] \) and consider the functional \(M: X \to \mathbb{R} \) defined by

 \[M[x] := \int_a^b L(t, x(t), \dot{x}(t), \ddot{x}(t)) \, dt, \quad \text{for all } x \in X. \]
Here the (given) integrand $L(t, x, v, w): [a, b] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is of class C^1.

(a) Suppose that for some $\hat{x} \in X$, we know that the directional derivative $M'[\hat{x}; h] = 0$ for every h in the subspace of X defined by the four conditions $h(a) = 0 = h(b)$ and $\dot{h}(a) = 0 = \dot{h}(b)$. By introducing such functions as

$$\phi(t) = \int_a^t \hat{L}_v(r) \, dr, \quad \mu(t) = \int_a^t \hat{L}_x(r) \, dr,$$

find an integro-differential equation satisfied by \hat{x}. Check that it reduces to (IEL) when L is independent of w.

(b) If both L and \hat{x} were known to be sufficiently smooth, repeated differentiation would reduce the equation in (b) to a fourth-order ordinary differential equation for \hat{x}. Find this equation. Check that it reduces to (DEL) when L is independent of w.

(c) Among all curves x in X that join $\alpha = (0, 0)$ to $\beta = (1, 0)$ and satisfy $\dot{x}(0) = 1$ and $\dot{x}(1) = -1$, find the one that minimizes

$$M[x] := \int_0^1 (\dddot{x}(t))^2 \, dt.$$

Be sure to prove that your candidate really gives the minimum. (Hint: Use the ODE in (b) to find a candidate, then proceed directly.)

Hint: Question 4 will help.