
M402(101) Solutions—Assignment 2
UBC M402 Resources by Philip D. Loewen

1. (a) Find the unique admissible extremal x̂ in the problem

min

{∫ 2

1

[
2x2(t) + t2ẋ2(t)

]
dt : x(1) = 1, x(2) = 5

}
.

(Hint: The Euler equation has two solutions of the form tp.)

(b) Prove that x̂ is the global solution to this problem.

(a) Here L = 2x2 + t2v2, so

Lx = 4x, Lv = 2t2v, Lvv = 2t2.

Since L ∈ C2 and Lvv > 0 for all v ∈ R and all (t, x) of interest, every extremal must be a C2

solution of (DEL):

d

dt

[
2t2ẋ(t)

]
= 4x(t), i.e., t2ẍ(t) + 2tẋ(t)− 2x(t) = 0.

This is a linear equation of “Euler type” (what a coincidence!), for which we expect solutions
of the form x(t) = tp. Substitution gives

0 = t2
[
p(p− 1)tp−2

]
+ 2

[
ptp−1

]
− 2tp = tp

[
p2 + p− 2

]
= tp(p+ 2)(p− 1).

So the general solution of (DEL) is

x(t) = At+
B

t2
, A,B ∈ R,

and the initial conditions give 1 = x(1) = A + B, 5 = x(2) = 2A + B/4, with the unique
solutions A = 19/7, B = −12/7. Hence the unique candidate for optimality is

x̂(t) =
1

7

[
19t−

12

t2

]
.

Note ˙̂x = A− 2B/t3 and ¨̂x = 6B/t4.

(b) For any h ∈ VII , expanding quadratics in the definition of Λ gives

Λ[x̂+ h] =

∫ 2

1

[
2(x̂+ h)2 + t2( ˙̂x+ ḣ)2

]

= Λ[x̂] +

∫ 2

1

[
4x̂h+ 2t2 ˙̂xḣ

]
dt+ Λ[h].

The middle integral vanishes, thanks to integration by parts and (DEL):
∫ 2

1

(
2t2 ˙̂x(t)

)
ḣ(t) dt = 2t2 ˙̂x(t)h(t)

∣∣∣
2

t=1
−

∫ 2

1

d

dt

(
2t2 ˙̂x

)
h(t) dt

=⇒

∫ 2

1

[
4x̂h+ 2t2 ˙̂xḣ

]
dt =

∫ 2

1

[
4x̂(t)−

d

dt

(
2t2 ˙̂x

)]
h(t) dt = 0.

Thus we have Λ[x̂ + h] = Λ[x̂] + Λ[h] whenever h ∈ VII , and clearly Λ[h] ≥ 0 for all h ∈ VII ,
so Λ[x̂+ h] ≥ Λ[x̂].
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2. Consider the following functional with a quadratic integrand:

Λ[y] =

∫ 3π/2

0

(
ẏ(t)2 − y(t)2

)
dt.

(a) Find an arc h with h(0) = 0, h(3π/2) = 0, and Λ[h] < 0.

(b) Find all extremals (if any) for Λ compatible with the endpoint conditions y(0) = 0, y(3π/2) = 0.

(c) Display a sequence of arcs yk ∈ C1[0, 3π/2], each satisfying yk(0) = 0, yk(3π/2) = 0, such that

Λ[yk] → −∞ as k → ∞.

(d) Continuing with Λ as given, consider the problem of minimizing Λ[x] over all x ∈ C1[0, 3π/2]
subject to new endpoint conditions,

x(0) = 0, x(3π/2) = B,

where B is some given constant. Find all admissible extremals, and then show that none of
them gives even a directional local minimizer. That is, show that for any admissible extremal
z there is an admissible variation h for which the 1-variable function

φ(λ) = Λ[z + λh]

does not have a local minimum at the point λ = 0.

(a) Many arcs h ∈ VII will make Λ[h] < 0. One possibility is h(t) = sin(2t/3), for which ḣ(t) =
(2/3) cos(2t/3) and (using θ = 2t/3)

Λ[h] =

∫ 3π/2

t=0

[
4

9
cos2

(
2t

3

)
− sin2

(
2t

3

)]
dt

=

∫ π

θ=0

[
4

9
cos2 θ − sin2 θ

]
3

2
dθ

=
π

2

[
4

9
− 1

](
3

2

)
= −

5π

12
.

A second choice is the quadratic h(t) = t(3π/2− t) =
3

2
πt− t2, which has

Λ[h] =

∫ 3π/2

t=0

[(
3

2
π − 2t

)2

−

(
3

2
πt− t2

)2
]
dt

=

∫ 3π/2

t=0

[(
9

4
π2 − 6πt+ 4t2

)
−

(
9

4
π2t2 − 3πt3 + t4

)]
dt

=
9

8
π3 −

81

320
π5 ≈ −42.579.

(b) Here L(t, x, v) = v2 − x2 has only C2 extremals, and each one of them must satisfy

ẍ(t) + x(t) = 0.
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The general solution is x(t) = c1 cos(t) + c2 sin(t), c1, c2 ∈ R. For admissibility, the constants
must comply with the endpoint conditions

0 = x(0) = c1, 0 = x(3π/2) = −c2.

Thus there is exactly one admissible extremal, namely the constant function x̂(t) = 0.

(c) Take any particular arc h ∈ VII for which Λ[h] < 0 (part (a) offers two specific choices) and
define yk(t) = kh(t). Then

Λ[yk] =

∫ 3π/2

t=0

(
k2ḣ(t)2 − k2h(t)2

)
dt = k2Λ[h] → −∞ as k → ∞.

(d) Every extremal x for Λ that starts from x(0) = 0 has the form x(t) = c2 sin t for some c2. The
given endpoint condition identifies exactly one admissible extremal,

z(t) = −B sin t.

Again taking the variation h constructed in part (a), we consider

φ(λ) = Λ[z + λh]

=

∫ 3π/2

0

[ (
ż2 + 2λżḣ+ λ2ḣ2

)
−
(
z2 + 2λzh+ λ2h2

)]
dt

= Λ[z] + 2λ

∫ 3π/2

0

(
żḣ− zh

)
dt+ λ2Λ[h].

Now since z̈ = −z, integration by parts shows that the middle term on the right is 0:

∫ 3π/2

0

żḣ dt = ż(t)h(t)

∣∣∣∣
3π/2

t=0

−

∫ 3π/2

0

z̈h dt =

∫ 3π/2

0

zh dt.

Since Λ[h] < 0, this implies
φ(λ) = Λ[z]− |Λ[h]|λ2.

So in the selected direction h, the functional Λ does not have a local minimum at z.

Discussion (not required for credit): Of course there are many (other) variations along which Λ
does have a local minimum at z. A similar situation from the simpler world of finite-dimensional
optimization occurs at a saddle point. At such a point, the directional derivative is 0 in every
direction, but the function gets larger along some directions and smaller in others. Sometimes
second-order analysis is enough to reveal this, and sometimes only higher-order approximations
will detect it. For example, explore f(x1, x2) = x2

1 − x2
2 and g(x1, x2) = x4

1 − x4
2.
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3. Given k, ℓ:R
C1

−→ R, define Φ:C1[a, b] → R as follows:

Φ[x] = k(x(a)) + ℓ(x(b)) , x ∈ C1[a, b].

(a) Show that for every x̂ in C1[a, b], the derivative operator DΦ[x̂]:C1[a, b] → R is well-defined
and linear.

(b) Use the abstract theory discussed in class to complete the following statement of first-order
necessary conditions in terms of k and ℓ, and then to prove it:

If an arc x̂ ∈ C1[a, b] gives a DLM for Φ, then . . ..

(c) Let Λ[x] =

∫ b

a

L(t, x(t), ẋ(t)) dt, where L ∈ C1. Suppose x̂ ∈ C1[a, b] gives a DLM for Λ + Φ.

Prove that x̂ satisfies not only (IEL), but also the endpoint conditions

L̂v(a) = k′(x̂(a)), −L̂v(b) = ℓ′(x̂(b)).

(a) Fix h ∈ C1[a, b] and expand the definition:

DΦ[x̂](h) = Φ′[x̂;h] = lim
λ→0+

1

λ
[Φ[x̂+ λh]− Φ[x̂]]

= lim
λ→0+

1

λ
[k(x̂(a) + λh(a)) + ℓ(x̂(b) + λh(b))− k(x̂(a))− ℓ(x̂(b))]

(1)
= lim

λ→0+

1

λ
[k(x̂(a) + λh(a))− k(x̂(a))]

+ lim
λ→0+

1

λ
[ℓ(x̂(b) + λh(b))− ℓ(x̂(b))]

(2)
=

d

dλ
[k(x̂(a) + λh(a))]λ=0 +

d

dλ
[ℓ(x̂(b) + λh(b))]λ=0

(3)
= k′(x̂(a))h(a) + ℓ′(x̂(b))h(b).

Here equations (2)–(3) follow from the chain rule, since k, ℓ ∈ C1. In particular, both limits
on the right of (1) exist, so the limit on the left exists too, and equation (1) holds. Thus
the calculation above is valid for all h ∈ C1[a, b], so the operator DΦ[x̂]:C1[a, b] → R is
well-defined. To prove linearity, we must confirm that

DΦ[x̂](c1h1 + c2h2) = c1DΦ[x̂](h1) + c2DΦ[x̂](h2) ∀c1, c2 ∈ R, ∀h1, h2 ∈ C1[a, b].

This follows directly by substitution. (“It’s obvious.”)

(b) If an arc x̂ ∈ C1[a, b] gives a DLM for Φ, then k′(x̂(a)) = 0 and ℓ′(x̂(b)) = 0.

Proof. Our abstract theory says that for all h ∈ C1[a, b],

0 = k′(x̂(a))h(a) + ℓ′(x̂(b))h(b).

Choose h(t) = t − b (for example) to get k′(x̂(a)) = 0, and h(t) = t − a (for example) to get
ℓ′(x̂(b)) = 0. ////
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Discussion. The result is supposed to be obvious: although the inputs x(a) and x(b) to
functions k and ℓ are supposed to be linked by a C1 arc, there is such an enormous variety of
arcs that the inputs are essentially independent of each other. The condition above is just the
same as the one we would obtain by saying that the function of two variables (r, s) 7→ k(r)+ℓ(s)
has a DLM over R2 at the point (r̂, ŝ) = (x̂(a), x̂(b)).

(c) If x̂ ∈ C1[a, b] gives a DLM for Λ + Φ, our general theory says that for all h ∈ C1[a, b],

0 = D(Λ + Φ)[x̂](h) = DΛ[x̂](h) +DΦ[x̂](h)

= k′(x̂(a))h(a) +

(∫ b

a

L̂x(r) dr + ℓ′(x̂(b))

)
h(b)

+

∫ b

a

(
L̂v(t)−

∫ t

a

L̂x(r) dr

)
ḣ(t) dt.

(∗)

If we look first in the subspace VII , we find that

∫ b

a

(
L̂v(t)−

∫ t

a

L̂x(r) dr

)
ḣ(t) dt = 0 ∀h ∈ VII .

By the DuBois-Reymond Lemma, this implies that some c ∈ R obeys

L̂v(t)−

∫ t

a

L̂x(r) dr = c, ∀t ∈ [a, b]. (∗∗)

In particular, we have c = L̂v(a) and

∫ b

a

L̂x(r) dr = L̂v(b)− c. This information about the arc

x̂ can be used wherever x̂ is mentioned—in particular, in line (∗) above:

0 = k′(x̂(a))h(a) +
(
L̂v(b)− c+ ℓ′(x̂(b))

)
h(b) +

∫ b

a

cḣ(t) dt

=

[
k′(x̂(a))− c

]
h(a) +

[
L̂v(b) + ℓ′(x̂(b))

]
h(b), ∀h ∈ C1[a, b].

Just as in part (b), the arbitrariness of h in this statement implies both

k′(x̂(a)) = c = L̂v(a) and L̂v(b) = −ℓ′(x̂(b)).
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4. Consider the following problem:

min

{∫ 1

0

[
tx2(t) + t2x(t)

]
dt : x ∈ PWS[0, 1], x(0) = A, x(1) = B

}
.

Show that a solution can only exist for certain values of A and B. Find these values, and the unique
candidate for the minimizing arc. Then use your ingenuity to prove that this arc truly provides a
unique global minimum.
[Clue: Call the arc you find x̂, and show that Λ[x]−Λ[x̂] > 0 is true for every arc x 6= x̂ satisfying
the endpoint conditions.]

Here the integrand is L(t, x, v) = tx2 + t2x, a function independent of v. Thus the Integral Euler-
Lagrange equation for an unknown arc x̂ reduces to

0 = c+

∫ t

0

L̂x(r) dr = c+

∫ t

0

[
2tx̂(t) + t2

]
dt ∀t ∈ (0, 1).

Since the integrand is continuous at every point of (0, 1), differentiation yields

0 = 2tx̂(t) + t2, i.e., x̂(t) = −t/2.

The only values of A and B compatible with this arc are A = 0, B = −1/2. For any other choices
of the endpoint conditions, there is no admissible extremal, so the problem can have no solution.

With A = 0 and B = −1/2, however, x̂(t) = −t/2 is the unique global minimizer. To prove
this, complete the square to rewrite the integrand as

L(t, x, v) = tx2 + t2x = t(x+ t/2)2 − t3/4.

Then for any admissible arc x, one has

Λ[x]− Λ[x̂] =

∫ 1

0

[
t (x(t) + t/2)

2
− t3/4− t (x̂(t) + t/2)

2
+ t3/4

]
dt

=

∫ 1

0

t (x(t) + t/2)
2
dt

≥ 0,

with equality if and only if t (x(t) + t/2)
2
= 0 for each t in [0, 1]. (There can be no exceptions,

because the integrand is a continuous function by hypothesis.) This forces x(t) = −t/2 = x̂(t) for
each t in (0, 1], and continuity at t = 0 then makes x identical to x̂ on the whole closed interval.
Hence x̂ gives the problem’s unique global minimum.
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