
M402(201) Solutions—Assignment 1
UBC M402 Resources by Philip D. Loewen

1. Consider the following variational problem, for which the constant arc x0(t) = 1 is admissible:

min

{
Λ[x]

def
=

∫ 3

1

t(ẋ2(t)− x2(t)) dt : x(1) = 1, x(3) = 1

}
. (P )

Use whatever software you choose (including “none”), to help complete the activities below.

(a) One admissible variation is h1(t) = (t− 1)(t− 3). Find the [quadratic] function

φ(λ) = Λ[x0 + λh1]

and sketch its graph. Then find the λ-value that minimizes φ and the corresponding arc
x = x0 + λh1.

(b) Imagine using a variation built from two ingredients, each with its own scale factor. To be
specific, keep h1 from part (a), invent h2(t) = (t−1)(t−2)(t−3), and consider the 2-parameter
family of admissible arcs

x(t;λ1, λ2) = x0(t) + λ1h1(t) + λ2h2(t), 1 ≤ t ≤ 3.

Let

f(λ1, λ2) = Λ[x(·;λ1, λ2)].

Write this [quadratic] function explicitly, and sketch its graph. Then find the point (λ1, λ2)
that minimizes f and the corresponding arc x.

(c) On the same set of axes, sketch the reference arc and the improvements found in parts (a)
and (b). Calculate and compare the Λ-values for these three arcs.

Please note: If you opt for software assistance, please . . .

• Report all inexact (computed) values with five or more significant figures,

• Include enough computer output to enable someone of modest skills to reproduce your work,

• Organize your submission so the answers above are easy to find.

For the constant reference arc x0(t) = 1, the integral value is

Λ[x0] =

∫ 3

1

t
(
02 − 12

)
dt =

[
−

t2

2

]3

t=1

= −4.

(a) For x0(t) = 1 and h1(t) = (t− 1)(t− 3) = t2 − 4t+3, we have ẋ0(t) = 0 and ḣ1(t) = 2t− 4, so

φ(λ) = Λ[x0 + λh1] =

∫ 3

1

t
(
λ2 [2t− 4]

2
−
[
1 + λ(t2 − 4t+ 3)

]2)
dt = Aλ2 +Dλ+ F,
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2 UBC M402 Solutions #1

for constant coefficients given by

A =

∫ 3

1

t
[
7 + 8t− 18t2 + 8t3 − t4

]
dt =

16

5
,

D =

∫ 3

1

t
[
− 6 + 8t− 2t2

]
dt =

16

3
,

F =

∫ 3

1

t [− 1] dt = −4.

(Checking that φ(0) = Λ[x0] is reassuring at this point.) The convex quadratic φ, sketched
below, takes its minimum value at the point where

0 = φ′(λ) = 2Aλ+B =
16

5
(2λ) +

16

3
, i.e., λ = −

5

6
.

Here is a sketch. Note that φ(0) = Λ[x0] = −4:
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Graph of φ(λ) =Λ[x0 +λh1 ], using h1 =(t−1)(t−3)

The minimum value of φ is φ(−5/6) = −56/9 ≈ −6.2222: this is the integral value associated
with the improved arc

x(a)(t) = x0(t)−
5

6
h1(t) = 1−

5

6
(t− 1)(t− 3).

(b) The given definitions produce the 2-parameter family of arcs

x(t;λ1, λ2) = x0(t) + λ1h1(t) + λ2h2(t)

= 1 + λ1(t− 1)(t− 3) + λ2(t− 1)(t− 2)(t− 3)

= 1 + λ1

(
t2 − 4t+ 3

)
+ λ2

(
t3 − 6t2 + 11t− 6

)
, 1 ≤ t ≤ 3.

The corresponding derivatives are simply

ẋ(t;λ1, λ2) = λ1 [2t− 4] + λ2

[
3t2 − 12t+ 11

]
,
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UBC M402 Solutions #1 3

so f(λ1, λ2) = Λ[x(·;λ1, λ2)] will turn out to be a quadratic function of (λ1, λ2). Grinding
out the coefficients by hand is not a trivial matter, although the basic idea is simple. A fully
symbolic approach is actually more manageable: for general functions h1, h2,

Λ[1 + λ1h1 + λ2h2] = −4 +

∫ 3

1

t


 (ḣ2

1 − h2
1)λ

2
1 + (ḣ2

2 − h2
2)λ

2
2 + 2

(
ḣ1ḣ2 − h1h2

)
λ1λ2

− 2h1λ1 − 2h2λ2


 dt

= Aλ2
1 + 2Bλ1λ2 + Cλ2

2 +Dλ1 + Eλ2 − 4.

For the suggested variations above,

A =

∫ 3

1

t
(
ḣ2
1 − h2

1

)
dt =

16

5

B =

∫ 3

1

t
(
ḣ1ḣ2 − h1h2

)
dt =

32

35

C =

∫ 3

1

t
(
ḣ2
2 − h2

2

)
dt =

304

105

D = −2

∫ 3

1

th1(t) dt =
16

3

E = −2

∫ 3

1

th2(t) dt =
8

15

(Note that setting λ2 = 0 amounts to applying only the single variation h1, so we have
f(λ1, 0) = φ(λ1) for the function φ studied in part (a). Thus the coefficients A and D are the
same here as in (a).) These numbers come from Maple. The graph of f is a typical convex
paraboloid. Here is a sketch of its contours in the region of interest:
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4 UBC M402 Solutions #1

The point (λ1, λ2) that minimizes f must be a critical point, i.e.,

0 =
∂f

∂λ1
= 2Aλ1 + 2Bλ2 +D, 0 =

∂f

∂λ2
= 2Bλ1 + 2Cλ2 + E.

We know the values of A, B, C, D, E here, so it is a routine matter to solve for

λ1 = −
322

363
≈ −0.88705, λ2 =

91

484
≈ 0.18802, f(λ1, λ2) = −

34387

5445
≈ −6.3153.

NOTE: The one-variable problem in part (a) can be recovered by consistently choosing λ2 = 0
here. Graphically, the problem in part (a) is to find the smallest possible value on the horizontal
axis in the contour plot shown above. The solution of part (a) is highlighted as a yellow dot in
the sketch. It’s important to observe that the minimizing point over the whole (λ1, λ2)-plane
cannot be located by choosing λ1 = λ∗

1 to minimize φ(λ1, 0) and then minimizing the one-
variable function λ2 7→ φ(λ∗

1, λ2). (The minimizer in this second problem will lie on a vertical
line through the yellow dot, and the point we seek is somewhere else.)

(c) In summary, we have

Λ[x0] = − 4 for x0(t) = 1,

Λ[xa] = −
56

9
≈ −6.2222 for xa(t) = 1−

5

6
(t− 1)(t− 3),

Λ[xb] = −
34387

5445
≈ −6.3153 for xb(t) = 1−

322

363
(t− 1)(t− 3) +

91

484
(t− 1)(t− 2)(t− 3).

The three arcs detailed here are shown in the following sketch:
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Constant Reference Arc x0 , with two improvements

x0

xa

xb

Discussion (Not Required for Credit). For L(t, x, v) = tv2 − tx2, every extremal must be C2

and the Euler-Lagrange equation for an unknown arc x is

d

dt
[2tẋ(t)] = −2tx(t), i.e., tẍ(t) + ẋ(t) + tx(t) = 0.
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UBC M402 Solutions #1 5

This is Bessel’s equation of order 0. Its general solution is x(t) = c1J0(t) + c2Y0(t) for famous
special functions J0, Y0. The choices c1 = 0.92701 and c2 = 3.29327 (approximately) satisfy the
given endpoint conditions, so, “If the stated variational problem has a smooth solution, then that
solution must be x̂(t) ≈ c1J0(t) + c2Y0(t) for the constants c1, c2 identified above.” The integral
value for x̂ is

Λ[x̂] ≈ −6.31547.

It can be shown that this is (except for rounding errors) the true minimum value in the problem.
It is very close to the value Λ[xb] associated with the cubic function calculated in part (b) above.
In fact, the graph of x̂ would be indistinguishable from the graph of xb in the sketch provided in
part (b). Here is a plot showing the (small) discrepancies between the true minimizer x̂ and the
approximate solution xb:
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Error ǫ(t) =x̂(t)−xb (t)
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6 UBC M402 Solutions #1

2. Consider this general Lagrangian involving continuously differentiable coefficients m, q, k, f, g, u:

L(t, x, v) = 1
2m(t)v2 + q(t)xv − 1

2k(t)x
2 + f(t)x+ g(t)v + u(t).

For a given interval [a, b], use this L to define the functional

Λ[x(·)] =

∫ b

a

L(t, x(t), ẋ(t)) dt.

(a) Suppose a smooth function x0: [a, b] → R is given (“the reference arc”) together with some
smooth h: [a, b] → R satisfying h(a) = 0 = h(b) (“a variation”). Write integral expressions
independent of λ for B and C in the identity

Λ[x0 + λh] = Λ[x0] + 2λB + Cλ2.

(b) With x0 and h as described in part (a), determine the function R (depending on x0, but
independent of h) for which

Λ′[x0;h] = lim
λ→0

Λ[x0 + λh]− Λ[x0]

λ
=

∫ b

a

R(t)h(t) dt.

(c) The assertion that “R(t) = 0 for each t in [a, b]” is, by definition, the Euler-Lagrange equation
for the reference arc x0. Notice that certain changes to L make no difference to the Euler-
Lagrange equation, e.g.,

(i) replacing the coefficient function u with 0, or

(ii) replacing the coefficient pair (f, g) with the pair (f − ġ, 0).

Explain both of these observations by describing how the proposed changes influence the values
of the original functional Λ.

(d) Prove: If m(t) > 0, q(t) = q0 is constant, and k(t) < 0 for all t in [a, b], then any reference arc
x0 satisfying the Euler-Lagrange equation provides a unique global minimizer for Λ among
all competing arcs x with the same endpoints (i.e., competitors must have x(a) = x0(a) and
x(b) = x0(b)).

(a) In writing the functional

Λ[x(·)] =

∫ b

a

[
1
2m(t)ẋ2 + q(t)xẋ− 1

2k(t)x
2 + f(t)x+ g(t)ẋ+ u(t)

]
dt,

we can save some writing by abbreviating m(t) as m, etc. Then for any arcs x and y,

Λ[x+ y]−Λ[x]

=

∫ b

a

[
1
2m(ẋ+ ẏ)2 + q(x+ y)(ẋ+ ẏ)− 1

2k(x+ y)2 + f(x+ y) + g(ẋ+ ẏ) + u
]
dt

−

∫ b

a

[
1
2mẋ2 + qxẋ− 1

2kx
2 + fx+ gẋ+ u

]
dt

=

∫ b

a

[
1
2m(2ẋẏ + ẏ2) + q(xẏ + yẋ+ yẏ)− 1

2k(2xy + y2) + fy + gẏ
]
dt

=

∫ b

a

[mẋẏ + q(xẏ + yẋ)− kxy + fy + gẏ] dt+

∫ b

a

[
1
2mẏ2 + qyẏ − 1

2ky
2
]
dt.
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UBC M402 Solutions #1 7

Each term in the first integral contains one factor of either y or ẏ, and each term in the second
integral contains two. Thus, substituting x = x0 and y = λh produces an expression of the
form

Λ[x0 + λh]− Λ[x0] = 2λB + λ2C

where

B =
1

2

∫ b

a

[
mẋ0ḣ+ q(x0ḣ+ hẋ0)− kx0h+ fh+ gḣ

]
dt,

C =

∫ b

a

[
1
2mḣ2 + qhḣ− 1

2kh
2
]
dt.

(b) Now with the notation in part (a),

Λ′[x0;h] = lim
λ→0

Λ[x0 + λh]− Λ[x0]

λ

= lim
λ→0

(2B + λC) = 2B =

∫ b

a

[
mẋ0ḣ+ q(x0ḣ+ hẋ0)− kx0h+ fh+ gḣ

]
dt

=

∫ b

a

[
(mẋ0 + qx0 + g) ḣ+ (qẋ0 − kx0 + f)h

]
dt.

To arrange the requested form, integrate by parts to get

∫ b

a

(mẋ0 + qx0 + g) ḣ dt = (mẋ0 + qx0 + g)h

∣∣∣∣
b

t=a

−

∫ b

a

h
d

dt
(mẋ0 + qx0 + g) dt.

Now the conditions h(a) = 0 = h(b) imply that the integrated term is 0. So using this result
in the expression above leads to

Λ′[x0;h] =

∫ b

a

[
(qẋ0 − kx0 + f)−

d

dt
(mẋ0 + qx0 + g)

]
h(t) dt =

∫ b

a

R(t)h(t) dt,

where

R(t) = (qẋ0 − kx0 + f)−
d

dt
(mẋ0 + qx0 + g) .

(c) (i) The function R found in (b) has no dependence at all on the given function u. This makes
sense because the role of u in defining Λ[x] is only to add the constant

U
def
=

∫ b

a

u(t) dt.

Just as in ordinary calculus, adding a constant to a given function makes no difference to
that function’s derivative, or to the location of its critical points. (Of course the critical
values are affected, but that’s a separate consideration.)

(ii) Rearrangement shows

R(t) = (f − ġ) + (qẋ0 − kx0)−
d

dt
(mẋ0 + qx0) .
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8 UBC M402 Solutions #1

The functions f and g appear only in the combination (f − ġ), which is unchanged if we
replace the pair (f, g) with (f − ġ, 0). Back in the original definition of Λ, the difference
between using these pairs is

∫ b

a

(fx+ gẋ) dt−

∫ b

a

( (f − ġ)x+ 0ẋ) dt =

∫ b

a

(gẋġx) dt

= g(t)x(t)|
b

x=a = g(b)x(b)− g(a)x(a).

As in part (i), this difference is a constant independent of the input arc x(), as long as
we focus on arcs for which the endpoint values x(a) and x(b) are given. Therefore the
Euler-Lagrange equation (which concerns derivatives of Λ) is insensitive to this change.

(d) Suppose x0 is an arc for which the Euler-Lagrange equation holds. In the notation of part (a),
this means that for any variation h with h(a) = 0 = h(b), we have B = 0 and therefore (with
λ = 1)

Λ[x0 + h] = Λ[x0] + C = Λ[x0] +

∫ b

a

[
1
2mḣ2 + qhḣ− 1

2kh
2
]
dt.

Now if q(t) = q0 is constant, then

∫ b

a

qhḣ dt = q0

∫ b

a

d

dt

(
1
2h(t)

2
)
dt = q0

[
h(t)2

2

]b

t=a

= 0,

so the term involving q above evaluates to 0, leaving

Λ[x0 + h] = Λ[x0] +

∫ b

a

[
1
2m(t)ḣ2 + 1

2 (−k(t))h2
]
dt.

Knowing both m(t) > 0 and k(t) < 0 for all t leads to the conclusion that

Λ[x0 + h] ≥ Λ[x0] + 0,

with a strict inequality in all cases where the variation h() is not the constant function 0. In
particular, if x is any arc with the same endpoints as x0, so x(a) = x0(a) and x(b) = x0(b),
then defining h = x− x0 produces an arc for which h(a) = 0 = h(b), so we have

Λ[x] = Λ[x0 + h] ≥ Λ[x0],

with equality if and only if x − x0 is the constant function 0. In other words, x0 provides a
unique global minimum for Λ among all arcs with the same endpoints.
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3. For each Lagrangian below, write the Euler-Lagrange equation and find all C2 solutions.

(a) L(t, x, v) = v2 − α2x2, α > 0,

(b) L(t, x, v) = v2 + α2x2, α > 0,

(c) L(t, x, v) = v2 + x2 − 2(sin t)x,

(d) L(t, x, v) = v2 − 6t2x,

(e) L(t, x, v) = (v − x)2 + 2etx.

(a) For L(t, x, v) = v2 − α2x2, α > 0, one has Lv = 2v and Lx = −2α2x.

(DEL) ⇐⇒
d

dt
(2ẋ(t)) = −2α2x(t) ⇐⇒ ẍ(t) + α2x(t) = 0.

This has general solution x(t) = A cosαt+B sinαt, A,B ∈ R.

(b) For L(t, x, v) = v2 + α2x2, α > 0, one has Lv = 2v and Lx = 2α2x.

(DEL) ⇐⇒
d

dt
(2ẋ(t)) = 2α2x(t) ⇐⇒ ẍ(t)− α2x(t) = 0.

This has general solution x(t) = Aeαt + Be−αt, A,B ∈ R; an equivalent form is x(t) =
C cosh(αt) +D sinh(αt), C,D ∈ R.

(c) For L(t, x, v) = v2 + x2 − 2(sin t)x, one has Lv = 2v and Lx = 2x− 2 sin t.

(DEL) ⇐⇒
d

dt
(2ẋ(t)) = 2x(t)− 2 sin t ⇐⇒ ẍ(t)− x(t) = − sin t.

The homogeneous equation ẍ − x = 0 has the general solution given in (b), with α = 1. To
find a particular solution, guess xp(t) = c cos t+ d sin t and plug in:

[−c cos t− d sin t]− [c cos t+ d sin t] = − sin t.

This equation holds for c = 0, d = 1
2 , so xp(t) =

1
2 sin t and the desired general solution is

x(t) = A cosh t+B sinh t+ 1
2 sin t, A,B ∈ R.

(d) For L(t, x, v) = v2 − 6t2x, one has Lv = 2v and Lx = −6t2.

(DEL) ⇐⇒
d

dt
(2ẋ(t)) = −6t2 ⇐⇒ ẍ(t) = −3t2.

The desired general solution is x(t) = − 1
4 t

4 +At+B, A,B ∈ R.

(e) For L(t, x, v) = (v − x)2 + 2etx, one has Lv = 2(v − x) and Lx = −2(v − x) + 2et.

(DEL) ⇐⇒
d

dt
(2ẋ(t)− 2x(t)) = −2(ẋ(t)− x(t)) + 2et ⇐⇒ ẍ(t)− x(t) = et.

The homogeneous equation ẍ− x = 0 has general solution given in (b) with α = 1. This time
the right-hand side is already a solution of the homogeneous equation, so a particular solution
must have the form xp(t) = ktet for some k. Plug this in to get 2ket = et, so k = 1

2 and the
desired general solution is

x(t) = A cosh t+B sinh t+ 1
2 te

t, A,B ∈ R.

(An equivalent description of the same set of functions is x(t) = c1e
t+c2e

−t+ 1
2 te

t, c1, c2 ∈ R.)
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Discussion. Searching for solutions x̂ of (IEL) in the larger class of C1 functions generates no
new arcs in cases (a)–(e) above. To explain this, consider any C1 extremal x̂. Then, in each part

of this question, L̂v(t) = 2 ˙̂x(t) − 2cx̂(t) for some constant c (with c = 0 in (a)–(d), c = 1 in (e)).

Rearranging ˙̂x(t) = 1
2 L̂v(t) + cx̂(t) expresses ˙̂x as a sum of C1 functions; consequently x̂ ∈ C2.

In fact, even enlarging the competition further to allow piecewise smooth solutions of (IEL)
generates no new extremals. To see why, recall that any extremal must satisfy condition (WE1),

i.e., L̂v(t
−) = L̂v(t

+), at all times interior to the interval on which the problem is posed. In all
cases above (using x̂(t−) = x̂(t+) for part (e)), this condition reduces to

˙̂x(t−) = ˙̂x(t+) ∀t. (†)

This implies that corner points are impossible for solutions of (IEL), so every extremal is C1, and
the reasoning in the previous paragraph applies.
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