M402(201) Solutions-Assignment 1

UBC M402 Resources by Philip D. Loewen

1. Consider the following variational problem, for which the constant arc $x_{0}(t)=1$ is admissible:

$$
\begin{equation*}
\min \left\{\Lambda[x] \stackrel{\text { def }}{=} \int_{1}^{3} t\left(\dot{x}^{2}(t)-x^{2}(t)\right) d t: x(1)=1, x(3)=1\right\} . \tag{P}
\end{equation*}
$$

Use whatever software you choose (including "none"), to help complete the activities below.
(a) One admissible variation is $h_{1}(t)=(t-1)(t-3)$. Find the [quadratic] function

$$
\phi(\lambda)=\Lambda\left[x_{0}+\lambda h_{1}\right]
$$

and sketch its graph. Then find the λ-value that minimizes ϕ and the corresponding arc $x=x_{0}+\lambda h_{1}$.
(b) Imagine using a variation built from two ingredients, each with its own scale factor. To be specific, keep h_{1} from part (a), invent $h_{2}(t)=(t-1)(t-2)(t-3)$, and consider the 2-parameter family of admissible arcs

$$
x\left(t ; \lambda_{1}, \lambda_{2}\right)=x_{0}(t)+\lambda_{1} h_{1}(t)+\lambda_{2} h_{2}(t), \quad 1 \leq t \leq 3 .
$$

Let

$$
f\left(\lambda_{1}, \lambda_{2}\right)=\Lambda\left[x\left(\cdot ; \lambda_{1}, \lambda_{2}\right)\right] .
$$

Write this [quadratic] function explicitly, and sketch its graph. Then find the point $\left(\lambda_{1}, \lambda_{2}\right)$ that minimizes f and the corresponding arc x.
(c) On the same set of axes, sketch the reference arc and the improvements found in parts (a) and (b). Calculate and compare the Λ-values for these three arcs.

Please note: If you opt for software assistance, please ...

- Report all inexact (computed) values with five or more significant figures,
- Include enough computer output to enable someone of modest skills to reproduce your work,
- Organize your submission so the answers above are easy to find.

For the constant reference arc $x_{0}(t)=1$, the integral value is

$$
\Lambda\left[x_{0}\right]=\int_{1}^{3} t\left(0^{2}-1^{2}\right) d t=\left[-\frac{t^{2}}{2}\right]_{t=1}^{3}=-4 .
$$

(a) For $x_{0}(t)=1$ and $h_{1}(t)=(t-1)(t-3)=t^{2}-4 t+3$, we have $\dot{x}_{0}(t)=0$ and $\dot{h}_{1}(t)=2 t-4$, so

$$
\phi(\lambda)=\Lambda\left[x_{0}+\lambda h_{1}\right]=\int_{1}^{3} t\left(\lambda^{2}[2 t-4]^{2}-\left[1+\lambda\left(t^{2}-4 t+3\right)\right]^{2}\right) d t=A \lambda^{2}+D \lambda+F,
$$

for constant coefficients given by

$$
\begin{aligned}
& A=\int_{1}^{3} t\left[7+8 t-18 t^{2}+8 t^{3}-t^{4}\right] d t=\frac{16}{5} \\
& D=\int_{1}^{3} t\left[-6+8 t-2 t^{2}\right] d t=\frac{16}{3}, \\
& F=\int_{1}^{3} t[-1] d t=-4 .
\end{aligned}
$$

(Checking that $\phi(0)=\Lambda\left[x_{0}\right]$ is reassuring at this point.) The convex quadratic ϕ, sketched below, takes its minimum value at the point where

$$
0=\phi^{\prime}(\lambda)=2 A \lambda+B=\frac{16}{5}(2 \lambda)+\frac{16}{3}, \quad \text { i.e., } \quad \lambda=-\frac{5}{6} .
$$

Here is a sketch. Note that $\phi(0)=\Lambda\left[x_{0}\right]=-4$:

The minimum value of ϕ is $\phi(-5 / 6)=-56 / 9 \approx-6.2222$: this is the integral value associated with the improved arc

$$
x^{(a)}(t)=x_{0}(t)-\frac{5}{6} h_{1}(t)=1-\frac{5}{6}(t-1)(t-3) .
$$

(b) The given definitions produce the 2-parameter family of arcs

$$
\begin{aligned}
x\left(t ; \lambda_{1}, \lambda_{2}\right) & =x_{0}(t)+\lambda_{1} h_{1}(t)+\lambda_{2} h_{2}(t) \\
& =1+\lambda_{1}(t-1)(t-3)+\lambda_{2}(t-1)(t-2)(t-3) \\
& =1+\lambda_{1}\left(t^{2}-4 t+3\right)+\lambda_{2}\left(t^{3}-6 t^{2}+11 t-6\right), \quad 1 \leq t \leq 3 .
\end{aligned}
$$

The corresponding derivatives are simply

$$
\dot{x}\left(t ; \lambda_{1}, \lambda_{2}\right)=\lambda_{1}[2 t-4]+\lambda_{2}\left[3 t^{2}-12 t+11\right],
$$

so $f\left(\lambda_{1}, \lambda_{2}\right)=\Lambda\left[x\left(\cdot ; \lambda_{1}, \lambda_{2}\right)\right]$ will turn out to be a quadratic function of $\left(\lambda_{1}, \lambda_{2}\right)$. Grinding out the coefficients by hand is not a trivial matter, although the basic idea is simple. A fully symbolic approach is actually more manageable: for general functions h_{1}, h_{2},

$$
\begin{aligned}
\Lambda\left[1+\lambda_{1} h_{1}+\lambda_{2} h_{2}\right] & =-4+\int_{1}^{3} t\left[\begin{array}{c}
\left(\dot{h}_{1}^{2}-h_{1}^{2}\right) \lambda_{1}^{2}+\left(\dot{h}_{2}^{2}-h_{2}^{2}\right) \lambda_{2}^{2}+2\left(\dot{h}_{1} \dot{h}_{2}-h_{1} h_{2}\right) \lambda_{1} \lambda_{2} \\
\\
\\
-2 h_{1} \lambda_{1}-2 h_{2} \lambda_{2}
\end{array}\right] d t \\
& =A \lambda_{1}^{2}+2 B \lambda_{1} \lambda_{2}+C \lambda_{2}^{2}+D \lambda_{1}+E \lambda_{2}-4 .
\end{aligned}
$$

For the suggested variations above,

$$
\begin{aligned}
& A=\int_{1}^{3} t\left(\dot{h}_{1}^{2}-h_{1}^{2}\right) d t=\frac{16}{5} \\
& B=\int_{1}^{3} t\left(\dot{h}_{1} \dot{h}_{2}-h_{1} h_{2}\right) d t=\frac{32}{35} \\
& C=\int_{1}^{3} t\left(\dot{h}_{2}^{2}-h_{2}^{2}\right) d t=\frac{304}{105} \\
& D=-2 \int_{1}^{3} t h_{1}(t) d t=\frac{16}{3} \\
& E=-2 \int_{1}^{3} t h_{2}(t) d t=\frac{8}{15}
\end{aligned}
$$

(Note that setting $\lambda_{2}=0$ amounts to applying only the single variation h_{1}, so we have $f\left(\lambda_{1}, 0\right)=\phi\left(\lambda_{1}\right)$ for the function ϕ studied in part (a). Thus the coefficients A and D are the same here as in (a).) These numbers come from Maple. The graph of f is a typical convex paraboloid. Here is a sketch of its contours in the region of interest:

The point $\left(\lambda_{1}, \lambda_{2}\right)$ that minimizes f must be a critical point, i.e.,

$$
0=\frac{\partial f}{\partial \lambda_{1}}=2 A \lambda_{1}+2 B \lambda_{2}+D, \quad 0=\frac{\partial f}{\partial \lambda_{2}}=2 B \lambda_{1}+2 C \lambda_{2}+E .
$$

We know the values of A, B, C, D, E here, so it is a routine matter to solve for

$$
\lambda_{1}=-\frac{322}{363} \approx-0.88705, \quad \lambda_{2}=\frac{91}{484} \approx 0.18802, \quad f\left(\lambda_{1}, \lambda_{2}\right)=-\frac{34387}{5445} \approx-6.3153 .
$$

NOTE: The one-variable problem in part (a) can be recovered by consistently choosing $\lambda_{2}=0$ here. Graphically, the problem in part (a) is to find the smallest possible value on the horizontal axis in the contour plot shown above. The solution of part (a) is highlighted as a yellow dot in the sketch. It's important to observe that the minimizing point over the whole (λ_{1}, λ_{2})-plane cannot be located by choosing $\lambda_{1}=\lambda_{1}^{*}$ to minimize $\phi\left(\lambda_{1}, 0\right)$ and then minimizing the onevariable function $\lambda_{2} \mapsto \phi\left(\lambda_{1}^{*}, \lambda_{2}\right)$. (The minimizer in this second problem will lie on a vertical line through the yellow dot, and the point we seek is somewhere else.)
(c) In summary, we have

$$
\begin{array}{ll}
\Lambda\left[x_{0}\right]= & -4 \\
\Lambda\left[x_{a}\right]= & \text { for } x_{0}(t)=1, \\
\Lambda\left[x_{b}\right]=-\frac{56}{9} \approx-6.2222 & \text { for } x_{a}(t)=1-\frac{5}{6}(t-1)(t-3), \\
& \text { for } x_{b}(t)=1-\frac{322}{363}(t-1)(t-3)+\frac{91}{484}(t-1)(t-2)(t-3) .
\end{array}
$$

The three arcs detailed here are shown in the following sketch:

Discussion (Not Required for Credit). For $L(t, x, v)=t v^{2}-t x^{2}$, every extremal must be C^{2} and the Euler-Lagrange equation for an unknown arc x is

$$
\frac{d}{d t}[2 t \dot{x}(t)]=-2 t x(t), \quad \text { i.e., } \quad t \ddot{x}(t)+\dot{x}(t)+t x(t)=0 .
$$

This is Bessel's equation of order 0. Its general solution is $x(t)=c_{1} J_{0}(t)+c_{2} Y_{0}(t)$ for famous special functions J_{0}, Y_{0}. The choices $c_{1}=0.92701$ and $c_{2}=3.29327$ (approximately) satisfy the given endpoint conditions, so, "If the stated variational problem has a smooth solution, then that solution must be $\widehat{x}(t) \approx c_{1} J_{0}(t)+c_{2} Y_{0}(t)$ for the constants c_{1}, c_{2} identified above." The integral value for \widehat{x} is

$$
\Lambda[\widehat{x}] \approx-6.31547
$$

It can be shown that this is (except for rounding errors) the true minimum value in the problem. It is very close to the value $\Lambda\left[x_{b}\right]$ associated with the cubic function calculated in part (b) above. In fact, the graph of \widehat{x} would be indistinguishable from the graph of x_{b} in the sketch provided in part (b). Here is a plot showing the (small) discrepancies between the true minimizer \widehat{x} and the approximate solution x_{b} :

2. Consider this general Lagrangian involving continuously differentiable coefficients m, q, k, f, g, u :

$$
L(t, x, v)=\frac{1}{2} m(t) v^{2}+q(t) x v-\frac{1}{2} k(t) x^{2}+f(t) x+g(t) v+u(t) .
$$

For a given interval $[a, b]$, use this L to define the functional

$$
\Lambda[x(\cdot)]=\int_{a}^{b} L(t, x(t), \dot{x}(t)) d t
$$

(a) Suppose a smooth function $x_{0}:[a, b] \rightarrow \mathbb{R}$ is given ("the reference arc") together with some smooth $h:[a, b] \rightarrow \mathbb{R}$ satisfying $h(a)=0=h(b)$ ("a variation"). Write integral expressions independent of λ for B and C in the identity

$$
\Lambda\left[x_{0}+\lambda h\right]=\Lambda\left[x_{0}\right]+2 \lambda B+C \lambda^{2} .
$$

(b) With x_{0} and h as described in part (a), determine the function R (depending on x_{0}, but independent of h) for which

$$
\Lambda^{\prime}\left[x_{0} ; h\right]=\lim _{\lambda \rightarrow 0} \frac{\Lambda\left[x_{0}+\lambda h\right]-\Lambda\left[x_{0}\right]}{\lambda}=\int_{a}^{b} R(t) h(t) d t .
$$

(c) The assertion that " $R(t)=0$ for each t in $[a, b]$ " is, by definition, the Euler-Lagrange equation for the reference arc x_{0}. Notice that certain changes to L make no difference to the EulerLagrange equation, e.g.,
(i) replacing the coefficient function u with 0 , or
(ii) replacing the coefficient pair (f, g) with the pair $(f-\dot{g}, 0)$.

Explain both of these observations by describing how the proposed changes influence the values of the original functional Λ.
(d) Prove: If $m(t)>0, q(t)=q_{0}$ is constant, and $k(t)<0$ for all t in $[a, b]$, then any reference arc x_{0} satisfying the Euler-Lagrange equation provides a unique global minimizer for Λ among all competing $\operatorname{arcs} x$ with the same endpoints (i.e., competitors must have $x(a)=x_{0}(a)$ and $\left.x(b)=x_{0}(b)\right)$.
(a) In writing the functional

$$
\Lambda[x(\cdot)]=\int_{a}^{b}\left[\frac{1}{2} m(t) \dot{x}^{2}+q(t) x \dot{x}-\frac{1}{2} k(t) x^{2}+f(t) x+g(t) \dot{x}+u(t)\right] d t,
$$

we can save some writing by abbreviating $m(t)$ as m, etc. Then for any $\operatorname{arcs} x$ and y,

$$
\begin{aligned}
\Lambda[x+y]- & \Lambda[x] \\
= & \int_{a}^{b}\left[\frac{1}{2} m(\dot{x}+\dot{y})^{2}+q(x+y)(\dot{x}+\dot{y})-\frac{1}{2} k(x+y)^{2}+f(x+y)+g(\dot{x}+\dot{y})+u\right] d t \\
& -\int_{a}^{b}\left[\frac{1}{2} m \dot{x}^{2}+q x \dot{x}-\frac{1}{2} k x^{2}+f x+g \dot{x}+u\right] d t \\
= & \int_{a}^{b}\left[\frac{1}{2} m\left(2 \dot{x} \dot{y}+\dot{y}^{2}\right)+q(x \dot{y}+y \dot{x}+y \dot{y})-\frac{1}{2} k\left(2 x y+y^{2}\right)+f y+g \dot{y}\right] d t \\
= & \int_{a}^{b}[m \dot{x} \dot{y}+q(x \dot{y}+y \dot{x})-k x y+f y+g \dot{y}] d t+\int_{a}^{b}\left[\frac{1}{2} m \dot{y}^{2}+q y \dot{y}-\frac{1}{2} k y^{2}\right] d t .
\end{aligned}
$$

Each term in the first integral contains one factor of either y or \dot{y}, and each term in the second integral contains two. Thus, substituting $x=x_{0}$ and $y=\lambda h$ produces an expression of the form

$$
\Lambda\left[x_{0}+\lambda h\right]-\Lambda\left[x_{0}\right]=2 \lambda B+\lambda^{2} C
$$

where

$$
\begin{aligned}
B & =\frac{1}{2} \int_{a}^{b}\left[m \dot{x}_{0} \dot{h}+q\left(x_{0} \dot{h}+h \dot{x}_{0}\right)-k x_{0} h+f h+g \dot{h}\right] d t, \\
C & =\int_{a}^{b}\left[\frac{1}{2} m \dot{h}^{2}+q h \dot{h}-\frac{1}{2} k h^{2}\right] d t .
\end{aligned}
$$

(b) Now with the notation in part (a),

$$
\begin{aligned}
\Lambda^{\prime}\left[x_{0} ; h\right] & =\lim _{\lambda \rightarrow 0} \frac{\Lambda\left[x_{0}+\lambda h\right]-\Lambda\left[x_{0}\right]}{\lambda} \\
& =\lim _{\lambda \rightarrow 0}(2 B+\lambda C)=2 B=\int_{a}^{b}\left[m \dot{x}_{0} \dot{h}+q\left(x_{0} \dot{h}+h \dot{x}_{0}\right)-k x_{0} h+f h+g \dot{h}\right] d t \\
& =\int_{a}^{b}\left[\left(m \dot{x}_{0}+q x_{0}+g\right) \dot{h}+\left(q \dot{x}_{0}-k x_{0}+f\right) h\right] d t .
\end{aligned}
$$

To arrange the requested form, integrate by parts to get

$$
\int_{a}^{b}\left(m \dot{x}_{0}+q x_{0}+g\right) \dot{h} d t=\left.\left(m \dot{x}_{0}+q x_{0}+g\right) h\right|_{t=a} ^{b}-\int_{a}^{b} h \frac{d}{d t}\left(m \dot{x}_{0}+q x_{0}+g\right) d t .
$$

Now the conditions $h(a)=0=h(b)$ imply that the integrated term is 0 . So using this result in the expression above leads to

$$
\Lambda^{\prime}\left[x_{0} ; h\right]=\int_{a}^{b}\left[\left(q \dot{x}_{0}-k x_{0}+f\right)-\frac{d}{d t}\left(m \dot{x}_{0}+q x_{0}+g\right)\right] h(t) d t=\int_{a}^{b} R(t) h(t) d t,
$$

where

$$
R(t)=\left(q \dot{x}_{0}-k x_{0}+f\right)-\frac{d}{d t}\left(m \dot{x}_{0}+q x_{0}+g\right) .
$$

(c) (i) The function R found in (b) has no dependence at all on the given function u. This makes sense because the role of u in defining $\Lambda[x]$ is only to add the constant

$$
U \stackrel{\text { def }}{=} \int_{a}^{b} u(t) d t .
$$

Just as in ordinary calculus, adding a constant to a given function makes no difference to that function's derivative, or to the location of its critical points. (Of course the critical values are affected, but that's a separate consideration.)
(ii) Rearrangement shows

$$
R(t)=(f-\dot{g})+\left(q \dot{x}_{0}-k x_{0}\right)-\frac{d}{d t}\left(m \dot{x}_{0}+q x_{0}\right) .
$$

The functions f and g appear only in the combination $(f-\dot{g})$, which is unchanged if we replace the pair (f, g) with $(f-\dot{g}, 0)$. Back in the original definition of Λ, the difference between using these pairs is

$$
\begin{aligned}
\int_{a}^{b}(f x+g \dot{x}) d t-\int_{a}^{b}((f-\dot{g}) x+0 \dot{x}) d t & =\int_{a}^{b}(g \dot{x} \dot{g} x) d t \\
& =\left.g(t) x(t)\right|_{x=a} ^{b}=g(b) x(b)-g(a) x(a)
\end{aligned}
$$

As in part (i), this difference is a constant independent of the input arc $x()$, as long as we focus on arcs for which the endpoint values $x(a)$ and $x(b)$ are given. Therefore the Euler-Lagrange equation (which concerns derivatives of Λ) is insensitive to this change.
(d) Suppose x_{0} is an arc for which the Euler-Lagrange equation holds. In the notation of part (a), this means that for any variation h with $h(a)=0=h(b)$, we have $B=0$ and therefore (with $\lambda=1$)

$$
\Lambda\left[x_{0}+h\right]=\Lambda\left[x_{0}\right]+C=\Lambda\left[x_{0}\right]+\int_{a}^{b}\left[\frac{1}{2} m \dot{h}^{2}+q h \dot{h}-\frac{1}{2} k h^{2}\right] d t .
$$

Now if $q(t)=q_{0}$ is constant, then

$$
\int_{a}^{b} q h \dot{h} d t=q_{0} \int_{a}^{b} \frac{d}{d t}\left(\frac{1}{2} h(t)^{2}\right) d t=q_{0}\left[\frac{h(t)^{2}}{2}\right]_{t=a}^{b}=0
$$

so the term involving q above evaluates to 0 , leaving

$$
\Lambda\left[x_{0}+h\right]=\Lambda\left[x_{0}\right]+\int_{a}^{b}\left[\frac{1}{2} m(t) \dot{h}^{2}+\frac{1}{2}(-k(t)) h^{2}\right] d t
$$

Knowing both $m(t)>0$ and $k(t)<0$ for all t leads to the conclusion that

$$
\Lambda\left[x_{0}+h\right] \geq \Lambda\left[x_{0}\right]+0
$$

with a strict inequality in all cases where the variation $h()$ is not the constant function 0 . In particular, if x is any arc with the same endpoints as x_{0}, so $x(a)=x_{0}(a)$ and $x(b)=x_{0}(b)$, then defining $h=x-x_{0}$ produces an arc for which $h(a)=0=h(b)$, so we have

$$
\Lambda[x]=\Lambda\left[x_{0}+h\right] \geq \Lambda\left[x_{0}\right]
$$

with equality if and only if $x-x_{0}$ is the constant function 0 . In other words, x_{0} provides a unique global minimum for Λ among all arcs with the same endpoints.
3. For each Lagrangian below, write the Euler-Lagrange equation and find all C^{2} solutions.
(a) $L(t, x, v)=v^{2}-\alpha^{2} x^{2}, \alpha>0$,
(b) $L(t, x, v)=v^{2}+\alpha^{2} x^{2}, \alpha>0$,
(c) $L(t, x, v)=v^{2}+x^{2}-2(\sin t) x$,
(d) $L(t, x, v)=v^{2}-6 t^{2} x$,
(e) $L(t, x, v)=(v-x)^{2}+2 e^{t} x$.
(a) For $L(t, x, v)=v^{2}-\alpha^{2} x^{2}, \alpha>0$, one has $L_{v}=2 v$ and $L_{x}=-2 \alpha^{2} x$.

$$
(\mathrm{DEL}) \Longleftrightarrow \frac{d}{d t}(2 \dot{x}(t))=-2 \alpha^{2} x(t) \Longleftrightarrow \ddot{x}(t)+\alpha^{2} x(t)=0
$$

This has general solution $x(t)=A \cos \alpha t+B \sin \alpha t, A, B \in \mathbb{R}$.
(b) For $L(t, x, v)=v^{2}+\alpha^{2} x^{2}, \alpha>0$, one has $L_{v}=2 v$ and $L_{x}=2 \alpha^{2} x$.

$$
(\mathrm{DEL}) \Longleftrightarrow \frac{d}{d t}(2 \dot{x}(t))=2 \alpha^{2} x(t) \Longleftrightarrow \ddot{x}(t)-\alpha^{2} x(t)=0
$$

This has general solution $x(t)=A e^{\alpha t}+B e^{-\alpha t}, A, B \in \mathbb{R}$; an equivalent form is $x(t)=$ $C \cosh (\alpha t)+D \sinh (\alpha t), C, D \in \mathbb{R}$.
(c) For $L(t, x, v)=v^{2}+x^{2}-2(\sin t) x$, one has $L_{v}=2 v$ and $L_{x}=2 x-2 \sin t$.

$$
(\mathrm{DEL}) \Longleftrightarrow \frac{d}{d t}(2 \dot{x}(t))=2 x(t)-2 \sin t \Longleftrightarrow \ddot{x}(t)-x(t)=-\sin t
$$

The homogeneous equation $\ddot{x}-x=0$ has the general solution given in (b), with $\alpha=1$. To find a particular solution, guess $x_{p}(t)=c \cos t+d \sin t$ and plug in:

$$
[-c \cos t-d \sin t]-[c \cos t+d \sin t]=-\sin t
$$

This equation holds for $c=0, d=\frac{1}{2}$, so $x_{p}(t)=\frac{1}{2} \sin t$ and the desired general solution is

$$
x(t)=A \cosh t+B \sinh t+\frac{1}{2} \sin t, A, B \in \mathbb{R} .
$$

(d) For $L(t, x, v)=v^{2}-6 t^{2} x$, one has $L_{v}=2 v$ and $L_{x}=-6 t^{2}$.

$$
(\mathrm{DEL}) \Longleftrightarrow \frac{d}{d t}(2 \dot{x}(t))=-6 t^{2} \quad \Longleftrightarrow \quad \ddot{x}(t)=-3 t^{2}
$$

The desired general solution is $x(t)=-\frac{1}{4} t^{4}+A t+B, A, B \in \mathbb{R}$.
(e) For $L(t, x, v)=(v-x)^{2}+2 e^{t} x$, one has $L_{v}=2(v-x)$ and $L_{x}=-2(v-x)+2 e^{t}$.

$$
(\mathrm{DEL}) \Longleftrightarrow \frac{d}{d t}(2 \dot{x}(t)-2 x(t))=-2(\dot{x}(t)-x(t))+2 e^{t} \quad \Longleftrightarrow \quad \ddot{x}(t)-x(t)=e^{t}
$$

The homogeneous equation $\ddot{x}-x=0$ has general solution given in (b) with $\alpha=1$. This time the right-hand side is already a solution of the homogeneous equation, so a particular solution must have the form $x_{p}(t)=k t e^{t}$ for some k. Plug this in to get $2 k e^{t}=e^{t}$, so $k=\frac{1}{2}$ and the desired general solution is

$$
x(t)=A \cosh t+B \sinh t+\frac{1}{2} t e^{t}, A, B \in \mathbb{R} .
$$

(An equivalent description of the same set of functions is $x(t)=c_{1} e^{t}+c_{2} e^{-t}+\frac{1}{2} t e^{t}, c_{1}, c_{2} \in \mathbb{R}$.)

Discussion. Searching for solutions \widehat{x} of (IEL) in the larger class of C^{1} functions generates no new arcs in cases (a)-(e) above. To explain this, consider any C^{1} extremal \widehat{x}. Then, in each part of this question, $\widehat{L}_{v}(t)=2 \dot{\widehat{x}}(t)-2 c \widehat{x}(t)$ for some constant $c($ with $c=0$ in (a)-(d), $c=1$ in (e)). Rearranging $\dot{\widehat{x}}(t)=\frac{1}{2} \widehat{L}_{v}(t)+c \widehat{x}(t)$ expresses $\dot{\widehat{x}}$ as a sum of C^{1} functions; consequently $\widehat{x} \in C^{2}$.

In fact, even enlarging the competition further to allow piecewise smooth solutions of (IEL) generates no new extremals. To see why, recall that any extremal must satisfy condition (WE1), i.e., $\widehat{L}_{v}\left(t^{-}\right)=\widehat{L}_{v}\left(t^{+}\right)$, at all times interior to the interval on which the problem is posed. In all cases above (using $\widehat{x}\left(t^{-}\right)=\widehat{x}\left(t^{+}\right)$for part (e)), this condition reduces to

$$
\dot{\hat{x}}\left(t^{-}\right)=\dot{\hat{x}}\left(t^{+}\right) \quad \forall t .
$$

This implies that corner points are impossible for solutions of (IEL), so every extremal is C^{1}, and the reasoning in the previous paragraph applies.

