M402(201) Solutions—Assignment 1

UBC M402 Resources by Philip D. Loewen

1. Consider the following variational problem, for which the constant arc $x_0(t) = 1$ is admissible:

$$\min\left\{\Lambda[x] \stackrel{\text{def}}{=} \int_{1}^{3} t(\dot{x}^{2}(t) - x^{2}(t)) dt : x(1) = 1, \ x(3) = 1\right\}.$$
 (P)

Use whatever software you choose (including "none"), to help complete the activities below.

(a) One admissible variation is $h_1(t) = (t-1)(t-3)$. Find the [quadratic] function

$$\phi(\lambda) = \Lambda[x_0 + \lambda h_1]$$

and sketch its graph. Then find the λ -value that minimizes ϕ and the corresponding arc $x = x_0 + \lambda h_1$.

(b) Imagine using a variation built from two ingredients, each with its own scale factor. To be specific, keep h_1 from part (a), invent $h_2(t) = (t-1)(t-2)(t-3)$, and consider the 2-parameter family of admissible arcs

$$x(t; \lambda_1, \lambda_2) = x_0(t) + \lambda_1 h_1(t) + \lambda_2 h_2(t), \qquad 1 \le t \le 3.$$

Let

$$f(\lambda_1, \lambda_2) = \Lambda[x(\cdot; \lambda_1, \lambda_2)].$$

Write this [quadratic] function explicitly, and sketch its graph. Then find the point (λ_1, λ_2) that minimizes f and the corresponding arc x.

(c) On the same set of axes, sketch the reference arc and the improvements found in parts (a) and (b). Calculate and compare the Λ -values for these three arcs.

Please note: If you opt for software assistance, please

- Report all inexact (computed) values with five or more significant figures,
- Include enough computer output to enable someone of modest skills to reproduce your work,
- Organize your submission so the answers above are easy to find.

For the constant reference arc $x_0(t) = 1$, the integral value is

$$\Lambda[x_0] = \int_1^3 t \left(0^2 - 1^2\right) dt = \left[-\frac{t^2}{2}\right]_{t=1}^3 = -4.$$

(a) For $x_0(t) = 1$ and $h_1(t) = (t-1)(t-3) = t^2 - 4t + 3$, we have $\dot{x}_0(t) = 0$ and $\dot{h}_1(t) = 2t - 4$, so

$$\phi(\lambda) = \Lambda[x_0 + \lambda h_1] = \int_1^3 t \left(\lambda^2 \left[2t - 4 \right]^2 - \left[1 + \lambda (t^2 - 4t + 3) \right]^2 \right) dt = A\lambda^2 + D\lambda + F,$$

"hw01" ©Philip D. Loewen, 08 Sep 2023, page 1.

for constant coefficients given by

$$A = \int_{1}^{3} t \left[7 + 8t - 18t^{2} + 8t^{3} - t^{4} \right] dt = \frac{16}{5},$$

$$D = \int_{1}^{3} t \left[-6 + 8t - 2t^{2} \right] dt = \frac{16}{3},$$

$$F = \int_{1}^{3} t \left[-1 \right] dt = -4.$$

(Checking that $\phi(0) = \Lambda[x_0]$ is reassuring at this point.) The convex quadratic ϕ , sketched below, takes its minimum value at the point where

$$0 = \phi'(\lambda) = 2A\lambda + B = \frac{16}{5}(2\lambda) + \frac{16}{3}, \text{ i.e., } \lambda = -\frac{5}{6}.$$

Here is a sketch. Note that $\phi(0) = \Lambda[x_0] = -4$:

The minimum value of ϕ is $\phi(-5/6) = -56/9 \approx -6.2222$: this is the integral value associated with the improved arc

$$x^{(a)}(t) = x_0(t) - \frac{5}{6}h_1(t) = 1 - \frac{5}{6}(t-1)(t-3).$$

(b) The given definitions produce the 2-parameter family of arcs

$$\begin{aligned} x(t;\lambda_1,\lambda_2) &= x_0(t) + \lambda_1 h_1(t) + \lambda_2 h_2(t) \\ &= 1 + \lambda_1(t-1)(t-3) + \lambda_2(t-1)(t-2)(t-3) \\ &= 1 + \lambda_1 \left(t^2 - 4t + 3 \right) + \lambda_2 \left(t^3 - 6t^2 + 11t - 6 \right), \qquad 1 \le t \le 3. \end{aligned}$$

The corresponding derivatives are simply

 $\dot{x}(t;\lambda_1,\lambda_2) = \lambda_1 [2t-4] + \lambda_2 [3t^2 - 12t + 11],$

"hw01" @Philip D. Loewen, 08 Sep 2023, page 2.

so $f(\lambda_1, \lambda_2) = \Lambda[x(\cdot; \lambda_1, \lambda_2)]$ will turn out to be a quadratic function of (λ_1, λ_2) . Grinding out the coefficients by hand is not a trivial matter, although the basic idea is simple. A fully symbolic approach is actually more manageable: for general functions h_1 , h_2 ,

$$\Lambda[1+\lambda_1h_1+\lambda_2h_2] = -4 + \int_1^3 t \begin{bmatrix} (\dot{h}_1^2-h_1^2)\lambda_1^2 + (\dot{h}_2^2-h_2^2)\lambda_2^2 + 2\left(\dot{h}_1\dot{h}_2 - h_1h_2\right)\lambda_1\lambda_2\\ -2h_1\lambda_1 - 2h_2\lambda_2 \end{bmatrix} dt$$
$$= A\lambda_1^2 + 2B\lambda_1\lambda_2 + C\lambda_2^2 + D\lambda_1 + E\lambda_2 - 4.$$

For the suggested variations above,

$$A = \int_{1}^{3} t \left(\dot{h}_{1}^{2} - h_{1}^{2}\right) dt = \frac{16}{5}$$

$$B = \int_{1}^{3} t \left(\dot{h}_{1}\dot{h}_{2} - h_{1}h_{2}\right) dt = \frac{32}{35}$$

$$C = \int_{1}^{3} t \left(\dot{h}_{2}^{2} - h_{2}^{2}\right) dt = \frac{304}{105}$$

$$D = -2 \int_{1}^{3} th_{1}(t) dt = \frac{16}{3}$$

$$E = -2 \int_{1}^{3} th_{2}(t) dt = \frac{8}{15}$$

(Note that setting $\lambda_2 = 0$ amounts to applying only the single variation h_1 , so we have $f(\lambda_1, 0) = \phi(\lambda_1)$ for the function ϕ studied in part (a). Thus the coefficients A and D are the same here as in (a).) These numbers come from Maple. The graph of f is a typical convex paraboloid. Here is a sketch of its contours in the region of interest:

The point (λ_1, λ_2) that minimizes f must be a critical point, i.e.,

$$0 = \frac{\partial f}{\partial \lambda_1} = 2A\lambda_1 + 2B\lambda_2 + D, \quad 0 = \frac{\partial f}{\partial \lambda_2} = 2B\lambda_1 + 2C\lambda_2 + E.$$

We know the values of A, B, C, D, E here, so it is a routine matter to solve for

$$\lambda_1 = -\frac{322}{363} \approx -0.88705, \quad \lambda_2 = \frac{91}{484} \approx 0.18802, \qquad f(\lambda_1, \lambda_2) = -\frac{34387}{5445} \approx -6.3153.$$

NOTE: The one-variable problem in part (a) can be recovered by consistently choosing $\lambda_2 = 0$ here. Graphically, the problem in part (a) is to find the smallest possible value on the horizontal axis in the contour plot shown above. The solution of part (a) is highlighted as a yellow dot in the sketch. It's important to observe that the minimizing point over the whole (λ_1, λ_2) -plane cannot be located by choosing $\lambda_1 = \lambda_1^*$ to minimize $\phi(\lambda_1, 0)$ and then minimizing the onevariable function $\lambda_2 \mapsto \phi(\lambda_1^*, \lambda_2)$. (The minimizer in this second problem will lie on a vertical line through the yellow dot, and the point we seek is somewhere else.)

(c) In summary, we have

$$\begin{split} \Lambda[x_0] &= -4 & \text{for } x_0(t) = 1, \\ \Lambda[x_a] &= -\frac{56}{9} \approx -6.2222 & \text{for } x_a(t) = 1 - \frac{5}{6}(t-1)(t-3), \\ \Lambda[x_b] &= -\frac{34387}{5445} \approx -6.3153 & \text{for } x_b(t) = 1 - \frac{322}{363}(t-1)(t-3) + \frac{91}{484}(t-1)(t-2)(t-3). \end{split}$$

The three arcs detailed here are shown in the following sketch:

Discussion (Not Required for Credit). For $L(t, x, v) = tv^2 - tx^2$, every extremal must be C^2 and the Euler-Lagrange equation for an unknown arc x is

$$\frac{d}{dt}[2t\dot{x}(t)] = -2tx(t), \quad \text{i.e.}, \quad t\ddot{x}(t) + \dot{x}(t) + tx(t) = 0.$$

This is Bessel's equation of order 0. Its general solution is $x(t) = c_1 J_0(t) + c_2 Y_0(t)$ for famous special functions J_0 , Y_0 . The choices $c_1 = 0.92701$ and $c_2 = 3.29327$ (approximately) satisfy the given endpoint conditions, so, "If the stated variational problem has a smooth solution, then that solution must be $\hat{x}(t) \approx c_1 J_0(t) + c_2 Y_0(t)$ for the constants c_1, c_2 identified above." The integral value for \hat{x} is

$$\Lambda[\widehat{x}] \approx -6.31547.$$

It can be shown that this is (except for rounding errors) the true minimum value in the problem. It is very close to the value $\Lambda[x_b]$ associated with the cubic function calculated in part (b) above. In fact, the graph of \hat{x} would be indistinguishable from the graph of x_b in the sketch provided in part (b). Here is a plot showing the (small) discrepancies between the true minimizer \hat{x} and the approximate solution x_b :

2. Consider this general Lagrangian involving continuously differentiable coefficients m, q, k, f, g, u:

$$L(t, x, v) = \frac{1}{2}m(t)v^{2} + q(t)xv - \frac{1}{2}k(t)x^{2} + f(t)x + g(t)v + u(t).$$

For a given interval [a, b], use this L to define the functional

$$\Lambda[x(\cdot)] = \int_{a}^{b} L(t, x(t), \dot{x}(t)) dt.$$

(a) Suppose a smooth function $x_0: [a, b] \to \mathbb{R}$ is given ("the reference arc") together with some smooth $h: [a, b] \to \mathbb{R}$ satisfying h(a) = 0 = h(b) ("a variation"). Write integral expressions independent of λ for B and C in the identity

$$\Lambda[x_0 + \lambda h] = \Lambda[x_0] + 2\lambda B + C\lambda^2.$$

(b) With x_0 and h as described in part (a), determine the function R (depending on x_0 , but independent of h) for which

$$\Lambda'[x_0;h] = \lim_{\lambda \to 0} \frac{\Lambda[x_0 + \lambda h] - \Lambda[x_0]}{\lambda} = \int_a^b R(t)h(t) \, dt.$$

- (c) The assertion that "R(t) = 0 for each t in [a, b]" is, by definition, the Euler-Lagrange equation for the reference arc x_0 . Notice that certain changes to L make no difference to the Euler-Lagrange equation, e.g.,
 - (i) replacing the coefficient function u with 0, or
 - (ii) replacing the coefficient pair (f, g) with the pair $(f \dot{g}, 0)$.

Explain both of these observations by describing how the proposed changes influence the values of the original functional Λ .

- (d) Prove: If m(t) > 0, $q(t) = q_0$ is constant, and k(t) < 0 for all t in [a, b], then any reference arc x_0 satisfying the Euler-Lagrange equation provides a **unique global minimizer** for Λ among all competing arcs x with the same endpoints (i.e., competitors must have $x(a) = x_0(a)$ and $x(b) = x_0(b)$).
- (a) In writing the functional

$$\Lambda[x(\cdot)] = \int_{a}^{b} \left[\frac{1}{2} m(t) \dot{x}^{2} + q(t) x \dot{x} - \frac{1}{2} k(t) x^{2} + f(t) x + g(t) \dot{x} + u(t) \right] dt,$$

we can save some writing by abbreviating m(t) as m, etc. Then for any arcs x and y,

$$\begin{split} \Lambda[x+y] - \Lambda[x] \\ &= \int_{a}^{b} \left[\frac{1}{2}m(\dot{x}+\dot{y})^{2} + q(x+y)(\dot{x}+\dot{y}) - \frac{1}{2}k(x+y)^{2} + f(x+y) + g(\dot{x}+\dot{y}) + u \right] dt \\ &- \int_{a}^{b} \left[\frac{1}{2}m\dot{x}^{2} + qx\dot{x} - \frac{1}{2}kx^{2} + fx + g\dot{x} + u \right] dt \\ &= \int_{a}^{b} \left[\frac{1}{2}m(2\dot{x}\dot{y}+\dot{y}^{2}) + q(x\dot{y}+y\dot{x}+y\dot{y}) - \frac{1}{2}k(2xy+y^{2}) + fy + g\dot{y} \right] dt \\ &= \int_{a}^{b} \left[m\dot{x}\dot{y} + q(x\dot{y}+y\dot{x}) - kxy + fy + g\dot{y} \right] dt + \int_{a}^{b} \left[\frac{1}{2}m\dot{y}^{2} + qy\dot{y} - \frac{1}{2}ky^{2} \right] dt. \end{split}$$

"hw01" ©Philip D. Loewen, 08 Sep 2023, page 6.

Each term in the first integral contains one factor of either y or \dot{y} , and each term in the second integral contains two. Thus, substituting $x = x_0$ and $y = \lambda h$ produces an expression of the form

$$\Lambda[x_0 + \lambda h] - \Lambda[x_0] = 2\lambda B + \lambda^2 C$$

where

$$\begin{split} B &= \frac{1}{2} \int_{a}^{b} \left[m \dot{x}_{0} \dot{h} + q(x_{0} \dot{h} + h \dot{x}_{0}) - k x_{0} h + f h + g \dot{h} \right] \, dt, \\ C &= \int_{a}^{b} \left[\frac{1}{2} m \dot{h}^{2} + q h \dot{h} - \frac{1}{2} k h^{2} \right] \, dt. \end{split}$$

(b) Now with the notation in part (a),

$$\begin{split} \Lambda'[x_0;h] &= \lim_{\lambda \to 0} \frac{\Lambda[x_0 + \lambda h] - \Lambda[x_0]}{\lambda} \\ &= \lim_{\lambda \to 0} \left(2B + \lambda C \right) = 2B = \int_a^b \left[m \dot{x}_0 \dot{h} + q(x_0 \dot{h} + h \dot{x}_0) - k x_0 h + f h + g \dot{h} \right] dt \\ &= \int_a^b \left[\left(m \dot{x}_0 + q x_0 + g \right) \dot{h} + \left(q \dot{x}_0 - k x_0 + f \right) h \right] dt. \end{split}$$

To arrange the requested form, integrate by parts to get

$$\int_{a}^{b} \left(m\dot{x}_{0} + qx_{0} + g \right) \dot{h} \, dt = \left(m\dot{x}_{0} + qx_{0} + g \right) h \Big|_{t=a}^{b} - \int_{a}^{b} h \frac{d}{dt} \left(m\dot{x}_{0} + qx_{0} + g \right) \, dt.$$

Now the conditions h(a) = 0 = h(b) imply that the integrated term is 0. So using this result in the expression above leads to

$$\Lambda'[x_0;h] = \int_a^b \left[\left(q\dot{x}_0 - kx_0 + f \right) - \frac{d}{dt} \left(m\dot{x}_0 + qx_0 + g \right) \right] h(t) \, dt = \int_a^b R(t)h(t) \, dt,$$

where

$$R(t) = (q\dot{x}_0 - kx_0 + f) - \frac{d}{dt} (m\dot{x}_0 + qx_0 + g).$$

(c) (i) The function R found in (b) has no dependence at all on the given function u. This makes sense because the role of u in defining $\Lambda[x]$ is only to add the constant

$$U \stackrel{\text{def}}{=} \int_{a}^{b} u(t) \, dt.$$

Just as in ordinary calculus, adding a constant to a given function makes no difference to that function's derivative, or to the location of its critical points. (Of course the critical *values* are affected, but that's a separate consideration.)

(ii) Rearrangement shows

$$R(t) = (f - \dot{g}) + (q\dot{x}_0 - kx_0) - \frac{d}{dt} (m\dot{x}_0 + qx_0).$$

UBC M402 Solutions #1

The functions f and g appear only in the combination $(f - \dot{g})$, which is unchanged if we replace the pair (f,g) with $(f - \dot{g}, 0)$. Back in the original definition of Λ , the difference between using these pairs is

$$\int_{a}^{b} (fx + g\dot{x}) dt - \int_{a}^{b} ((f - \dot{g})x + 0\dot{x}) dt = \int_{a}^{b} (g\dot{x}\dot{g}x) dt$$
$$= g(t)x(t)|_{x=a}^{b} = g(b)x(b) - g(a)x(a).$$

As in part (i), this difference is a constant independent of the input arc x(), as long as we focus on arcs for which the endpoint values x(a) and x(b) are given. Therefore the Euler-Lagrange equation (which concerns *derivatives* of Λ) is insensitive to this change.

(d) Suppose x_0 is an arc for which the Euler-Lagrange equation holds. In the notation of part (a), this means that for any variation h with h(a) = 0 = h(b), we have B = 0 and therefore (with $\lambda = 1$)

$$\Lambda[x_0 + h] = \Lambda[x_0] + C = \Lambda[x_0] + \int_a^b \left[\frac{1}{2}m\dot{h}^2 + qh\dot{h} - \frac{1}{2}kh^2\right] dt.$$

Now if $q(t) = q_0$ is constant, then

$$\int_{a}^{b} qh\dot{h} dt = q_0 \int_{a}^{b} \frac{d}{dt} \left(\frac{1}{2}h(t)^2\right) dt = q_0 \left[\frac{h(t)^2}{2}\right]_{t=a}^{b} = 0,$$

so the term involving q above evaluates to 0, leaving

$$\Lambda[x_0 + h] = \Lambda[x_0] + \int_a^b \left[\frac{1}{2}m(t)\dot{h}^2 + \frac{1}{2}(-k(t))h^2\right] dt.$$

Knowing both m(t) > 0 and k(t) < 0 for all t leads to the conclusion that

$$\Lambda[x_0 + h] \ge \Lambda[x_0] + 0,$$

with a strict inequality in all cases where the variation h() is not the constant function 0. In particular, if x is any arc with the same endpoints as x_0 , so $x(a) = x_0(a)$ and $x(b) = x_0(b)$, then defining $h = x - x_0$ produces an arc for which h(a) = 0 = h(b), so we have

$$\Lambda[x] = \Lambda[x_0 + h] \ge \Lambda[x_0],$$

with equality if and only if $x - x_0$ is the constant function 0. In other words, x_0 provides a unique global minimum for Λ among all arcs with the same endpoints.

3. For each Lagrangian below, write the Euler-Lagrange equation and find all C^2 solutions.

(a) $L(t, x, v) = v^2 - \alpha^2 x^2, \ \alpha > 0,$ (b) $L(t, x, v) = v^2 + \alpha^2 x^2, \ \alpha > 0,$ (c) $L(t, x, v) = v^2 + x^2 - 2(\sin t)x,$ (d) $L(t, x, v) = v^2 - 6t^2x,$ (e) $L(t, x, v) = (v - x)^2 + 2e^tx.$

(a) For $L(t, x, v) = v^2 - \alpha^2 x^2$, $\alpha > 0$, one has $L_v = 2v$ and $L_x = -2\alpha^2 x$.

(DEL)
$$\iff \frac{d}{dt} (2\dot{x}(t)) = -2\alpha^2 x(t) \iff \ddot{x}(t) + \alpha^2 x(t) = 0.$$

This has general solution $x(t) = A \cos \alpha t + B \sin \alpha t, A, B \in \mathbb{R}$.

(b) For $L(t, x, v) = v^2 + \alpha^2 x^2$, $\alpha > 0$, one has $L_v = 2v$ and $L_x = 2\alpha^2 x$.

(DEL)
$$\iff \frac{d}{dt} (2\dot{x}(t)) = 2\alpha^2 x(t) \iff \ddot{x}(t) - \alpha^2 x(t) = 0.$$

This has general solution $x(t) = Ae^{\alpha t} + Be^{-\alpha t}$, $A, B \in \mathbb{R}$; an equivalent form is $x(t) = C \cosh(\alpha t) + D \sinh(\alpha t)$, $C, D \in \mathbb{R}$.

(c) For $L(t, x, v) = v^2 + x^2 - 2(\sin t)x$, one has $L_v = 2v$ and $L_x = 2x - 2\sin t$.

(DEL)
$$\iff \frac{d}{dt} (2\dot{x}(t)) = 2x(t) - 2\sin t \iff \ddot{x}(t) - x(t) = -\sin t.$$

The homogeneous equation $\ddot{x} - x = 0$ has the general solution given in (b), with $\alpha = 1$. To find a particular solution, guess $x_p(t) = c \cos t + d \sin t$ and plug in:

 $[-c\cos t - d\sin t] - [c\cos t + d\sin t] = -\sin t.$

This equation holds for c = 0, $d = \frac{1}{2}$, so $x_p(t) = \frac{1}{2} \sin t$ and the desired general solution is

$$x(t) = A\cosh t + B\sinh t + \frac{1}{2}\sin t, \ A, B \in \mathbb{R}.$$

(d) For $L(t, x, v) = v^2 - 6t^2 x$, one has $L_v = 2v$ and $L_x = -6t^2$.

(DEL)
$$\iff \frac{d}{dt} (2\dot{x}(t)) = -6t^2 \iff \ddot{x}(t) = -3t^2.$$

The desired general solution is $x(t) = -\frac{1}{4}t^4 + At + B, A, B \in \mathbb{R}$.

(e) For $L(t, x, v) = (v - x)^2 + 2e^t x$, one has $L_v = 2(v - x)$ and $L_x = -2(v - x) + 2e^t$.

(DEL)
$$\iff \frac{d}{dt} \left(2\dot{x}(t) - 2x(t) \right) = -2(\dot{x}(t) - x(t)) + 2e^t \iff \ddot{x}(t) - x(t) = e^t.$$

The homogeneous equation $\ddot{x} - x = 0$ has general solution given in (b) with $\alpha = 1$. This time the right-hand side is already a solution of the homogeneous equation, so a particular solution must have the form $x_p(t) = kte^t$ for some k. Plug this in to get $2ke^t = e^t$, so $k = \frac{1}{2}$ and the desired general solution is

$$x(t) = A \cosh t + B \sinh t + \frac{1}{2} t e^t, \ A, B \in \mathbb{R}$$

(An equivalent description of the same set of functions is $x(t) = c_1 e^t + c_2 e^{-t} + \frac{1}{2} t e^t, c_1, c_2 \in \mathbb{R}$.)

Discussion. Searching for solutions \hat{x} of (IEL) in the larger class of C^1 functions generates no new arcs in cases (a)–(e) above. To explain this, consider any C^1 extremal \hat{x} . Then, in each part of this question, $\hat{L}_v(t) = 2\dot{x}(t) - 2c\hat{x}(t)$ for some constant c (with c = 0 in (a)–(d), c = 1 in (e)). Rearranging $\dot{x}(t) = \frac{1}{2}\hat{L}_v(t) + c\hat{x}(t)$ expresses \dot{x} as a sum of C^1 functions; consequently $\hat{x} \in C^2$.

In fact, even enlarging the competition further to allow piecewise smooth solutions of (IEL) generates no new extremals. To see why, recall that any extremal must satisfy condition (WE1), i.e., $\hat{L}_v(t^-) = \hat{L}_v(t^+)$, at all times interior to the interval on which the problem is posed. In all cases above (using $\hat{x}(t^-) = \hat{x}(t^+)$ for part (e)), this condition reduces to

$$\dot{\hat{x}}(t^{-}) = \dot{\hat{x}}(t^{+}) \qquad \forall t. \tag{(†)}$$

This implies that corner points are impossible for solutions of (IEL), so every extremal is C^1 , and the reasoning in the previous paragraph applies.