
The Wave Equation
UBC M257/316 Lecture Notes c©2014 by Philip D. Loewen

Many PDE’s describe wave motion. The simplest is

utt = c2uxx.

Here c > 0 is a given constant, and u = u(x, t) is some quantity of interest at position
x and time t. Depending on the application of interest, u could represent sound
pressure in air (or water, or rock), microwave amplitude in a waveguide, electrical
potential (voltage) in a cable, or lateral string displacement in a musical instrument.

Units. Recall that [z] means “the units of z”. Suppose [t] = s, [x] = m. Then
[
∂2u

∂t2

]
=

[
c2
∂2u

∂x2

]
⇐⇒

[u]

s2
= [c]

2 [u]

m2
⇐⇒ [c]

2
=

(
m

s

)2

.

No matter what units u has, c has units of velocity. Does this mean something?

A. Derivation—Motion of an Elastic String

Consider an elastic string whose equilibrium position is on the x-axis. Linear density
of the string is ρ; typically [ρ] = kg/m. The string can move, but only transversally,
i.e., each particle moves at right angles to x-axis. Write u(x, t) for the displacement
at time t of the particle whose equilibrium position is x.

Bowed String on [0, ℓ]

Let τ = τ(x, t) denote tension in string at position x, time t: note τ(x, t) ≥ 0
for all x, t. (“You can’t push on a rope.”)

Let θ = θ(x, t) denote the angle of elevation for the tangent line at point x: note
−π/2 < θ(x, t) < π/2 for each x, and tan θ(x, t) = ux(x, t).

Assumptions. (i) Transverse motion only (see above).

(ii) Small slopes: for all x ∈ (0, ℓ), slope ux(x, t) is so small that

cos θ(x, t) ≈ 1, sin θ(x, t) ≈
sin θ(x, t)

cos θ(x, t)
= tan θ(x, t) = ux(x, t).

[Note: tan θ − sin θ =

[
θ +

θ3

3
+ . . .

]
−

[
θ −

θ3

6
± · · ·

]
=
θ3

2
+ O(θ5) extremely

small for θ ≈ 0.]
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2 PHILIP D. LOEWEN

Transverse Force Balance (u-direction). Study forces on string segment based
in interval [x, x+ h] at instant t. Assuming θ > 0 here, we have . . .
Right end (x+ h): Tension force pulls right and up. Vertical component has magni-
tude

τ(x+ h, t) sin θ(x+ h, t) ≈ τ(x+ h, t)ux(x+ h, t) (by (ii)).

Left end (x): Tension force pulls left and down. Vertical component has magnitude

τ(x, t) sin θ(x, t) ≈ τ(x, t)ux(x, t) (by (ii)).

Interior points: External force per unit length in u-direction is Fext, some function
of u, x, t.
Newton II: ma = Ftotal, so

ρhutt(xCM, t) ≈ τ(x+ h, t)ux(x+ h, t) − τ(x, t)ux(x, t) + hFext. (∗)

Taking h→ 0+ gives 0 = 0 (wow). Dividing by h > 0 and then sending h→ 0+ gives

lim
h→0+

[ρutt(xCM, t)] = lim
h→0+

[
τ(x+ h, t)ux(x+ h, t) − τ(x, t)ux(x, t)

h
+ Fext

]
.

This leads to the general wave equation

ρ(x)utt(x, t) =
∂

∂x
(τ(x, t)ux(x, t)) + Fext.

[Variable linear density is OK.]

Longitudinal Force Balance (x-direction). Net force in x-direction is

F = τ(x+ h, t) cos θ(x+ h, t) − τ(x, t) cos θ(x, t) + hGext,

where Gext is some external force per unit length, possibly depending on u, x, t. To
sustain assumption (i) [transverse motion only], this force must be 0:

τ(x+ h, t) cos θ(x+ h, t) − τ(x, t) cos θ(x, t) = −hGext.

Simplest Case. If Gext = 0 (no external forces), divide by h and send h→ 0 to get

0 =
∂

∂x
τ(x, t) cos θ(x, t),

whence τ(x, t) cos θ(x, t) = f(t) must be independent of x. We are assuming cos θ ≈ 1,
so τ(x, t) = f(t) is independent of x. Without externally changing the tension, its
variation will be due exclusively to stretching of the string, which we are neglecting.
Thus τ(x, t) will actually be a constant.

When tension τ > 0 and density ρ > 0 are both constant, we get

utt =
τ

ρ
uxx.

This fits pattern above, with c2 = τ/ρ. Check the units:
[
τ

ρ

]
=

N

kg/m
=

kg m/s2

kg/m
=

(
m

s

)2

.

As expected, c =
√
τ/ρ has units of velocity: Good.
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The Wave Equation 3

Interesting Alternative. If the x-axis points straight up, then the external force
acting on [x, x+ h] is its weight: this gives

hGext = −mg = −ρhg.

In this case we would have

τ(x+ h, t) cos θ(x+ h, t) − τ(x, t) cos θ(x, t) = ρhg.

Dividing by h > 0 and sending h→ 0+ gives

∂

∂x
(τ(x, t) cos θ(x, t)) = ρg.

Hence τ(x, t) cos θ(x, t) = ρgx+ C for some C. Again using cos θ ≈ 1 and assuming
τ has no time-dependence, we get

τ(x) = τ(0) + ρgx.

Finally, if the string is hanging freely with its loose end at level x = 0, then τ(0) = 0,
so τ(x) = ρgx. In this case our wave equation (assuming constant density ρ) becomes

ρutt =
∂

∂x
(ρgxux) , i.e., utt = g

∂

∂x
(xux) = gux + gxuxx.

I have seen this outside my office window! We’ll study this in detail later, if time
permits.

B. Boundary Conditions and Boundary Value Problems

Boundary Conditions. If string segment [0, h] has left end attached to a spring
with force constant k (Hooke’s Law), arguments above give this modification of (∗):

ρhutt(xCM, t) ≈ τ(h, t)ux(h, t) − ku(0, t) + hFext.

Taking h → 0+ here gives 0 = τ(0, t)ux(0, t) − ku(0, t); in constant-tension case one
gets

τux(0, t) − ku(0, t) = 0.

Three cases arise:

(i) k = 0 [Free vertical motion at x = 0]: ux(0, t) = 0.

(ii) k → ∞ [Clamped string (no motion) at x = 0]: u(0, t) = 0.

(iii) 0 < k < ∞ [Some springy resistance at x = 0]: ux(0, t) − αu(0, t) = 0.
(α = k/τ .)

Other Interpretations. For pipes of air, u(x, t) measures the excess pressure above
ambient at location x and time t. Therefore u(0, t) = 0 if the end of the pipe at x = 0
is open (e.g., a flute has both ends open), whereas ux(0, t) = 0 if the end of the pipe
at x = 0 is closed (e.g., blowing across the open top of a soda bottle). Reference:
Iain G. Main, Vibrations and Waves in Physics (3/e), pages 181–182.
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4 PHILIP D. LOEWEN

Boundary Value Problem. A well-formed problem for the 1D wave equation in
0 < x < ℓ has 3 ingredients. Thinking about the lateral vibrations of a tight string
makes each one seem reasonable.

(PDE) – expresses Newton’s 2nd law: concavity drives acceleration.

utt = c2uxx 0 < x < ℓ, t > 0.

[More general forms possible here.]

(BC) – force-balance relation at each end of string. Choose between

(i) u(0, t) = 0 = u(ℓ, t) . . . fixed ends,

(ii) ux(0, t) = 0 = ux(ℓ, t) . . . free ends,

(iii) ux(0, t) − au(0, t) = 0 = ux(ℓ, t) − bu(ℓ, t) . . . springy ends,

(iv) u(0, t) = φ(t), u(ℓ, t) = ψ(t) . . . end positions decreed by prescribed fcns of
time [e.g., skipping rope]

(v) τux(0, t) = φ(t), τux(ℓ, t) = ψ(t) . . . given time-varying vertical forces act
on ends of rope.

Cdx (i)–(iii) are homogeneous; (iv)–(v) are not [unless φ = 0 = ψ]. Allow
different cdx at different ends.

(IC) – initial conditions. Need two:

(i) u(x, 0) = f(x), 0 < x < ℓ . . . initial position,

(ii) ut(x, 0) = g(x), 0 < x < ℓ . . . initial velocity.

Both f and g must be given in problem statement.

C. Separation of Variables and Modes

Consider the simplest wave equation for 0 < x < ℓ, ignoring initial conditions for
now.

(PDE) utt = c2uxx, 0 < x < ℓ, t > 0,

(BC) x = 0: Choose fixed (u = 0) or free (ux = 0), t > 0,
x = ℓ: Choose fixed (u = 0) or free (ux = 0), t > 0,

Trying u(x, t) = X(x)T (t) in (PDE) leads to

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= 444 tan

(
πα

2

)
, (∗)

for some α ∈ (−1, 1). This form of the separation constant is deliberately chosen to
be ugly, in order to make a point. (But notice that any real constant can be expressed
this way, for some α ∈ (−1, 1).) Split (∗):

T ′′(t) − 444c2 tan

(
πα

2

)
T (t) = 0, (1)

X ′′(x) − 444 tan

(
πα

2

)
X(x) = 0. (2)
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The Wave Equation 5

Different (BC) above have different consequences for X . E.g., suppose both ends
fixed: u(0, t) = 0 = u(ℓ, t) gives

X(0)T (t) = 0, X(ℓ)T (t) = 0, t > 0.

This forces X(0) = 0 = X(ℓ), so we have an eigenvalue problem for X :

X ′′(x) − 444 tan

(
πα

2

)
X(x) = 0, 0 < x < ℓ; X(0) = 0 = X(ℓ).

The eigenfunctions are known (FSS): Xn(x) = sin

(
nπx

ℓ

)
for n = 1, 2, 3, . . .. The

corresponding values of α are too horrible to contemplate. But the eigenfunctions
are all we need to know to express

u(x, t) =

∞∑

n=1

Tn(t) sin

(
nπx

ℓ

)

for some Tn’s. Plug this into PDE:

0 = utt − c2uxx

=

∞∑

n=1

T ′′

n (t) sin

(
nπx

ℓ

)
− c2

∞∑

n=1

Tn(t)

[
−

(
nπ

ℓ

)2
]

sin

(
nπx

ℓ

)

=
∞∑

n=1

[
T ′′

n (t) +

(
nπc

ℓ

)2

Tn(t)

]
sin

(
nπx

ℓ

)
.

By FSS theory, this gives (for each n)

0 =

[
T ′′

n (t) +

(
nπc

ℓ

)2

Tn(t)

]
=⇒ Tn(t) = An cos

(nπc
ℓ
t+ δn

)

for some amplitude constant An and phase shift constant δn determined by the initial
conditions. So a typical solution [basic wave eq’n, fixed-end case] will look like

u(x, t) =

∞∑

n=1

An cos
(nπc

ℓ
t+ δn

)
sin

(
nπx

ℓ

)
.

Notice: We never had to know the horrible αn’s in (∗) and use them in (1). The
analogue of (1) came up naturally when plugging our series form in the PDE, and
the appropriate constants were provided automatically.

Modes. Simplest nontrivial solutions have exactly one nonzero term of product form,
like

[choose δ5 = 0, A5 = 1, all other An = 0],cos

(
5πc

ℓ
t

)
sin

(
5πx

ℓ

)

[choose δ5 = −π/2, A15 = 1, all other An = 0].cos

(
15πc

ℓ
t

)
sin

(
15πx

ℓ

)
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6 PHILIP D. LOEWEN

For fixed n, the basic eigenfunction shape Xn(x) = sin

(
nπx

ℓ

)
is preserved but with

a time-varying amplitude that varies harmonically. The time-variation (what you

hear) has angular frequency of
nπc

ℓ
; the mode shape variation (what you see) has

angular frequency
nπ

ℓ
. Note that when discussing oscillatory signals in time, like

sound waves or radio waves, we usually don’t use angular frequency (radians per
second); instead we use Hertz (cycles per second). Since one cycle equals 2π radians,
the time-variations associated with motion in mode n have frequency

nπc

ℓ

rad

sec
=
nπc

ℓ

rad

sec
×

1 cycle

2π rad
=
nc

2ℓ

cycle

sec
=
nc

2ℓ
Hz.

D. Fourier’s Ring and Travelling Waves

In classic wave-motion problems driven by

utt = c2uxx, 0 < x < ℓ, t > 0,

we are well acquainted with boundary conditions that will lead to eigenfunction
series from one of the “Big Four” families. Separating u(x, t) = X(x)T (t) works out
as follows:

[FSS] u(0, t) = 0 = u(ℓ, t) =⇒ Xn(x) = sin

(
nπx

ℓ

)
, n = 1, 2, 3, . . ..

[FCS] u(0, t) = 0 = u(ℓ, t) =⇒ Xn(x) = cos

(
nπx

ℓ

)
, n = 0, 1, 2, 3, . . ..

[HPSS] u(0, t) = 0 = ux(ℓ, t) =⇒ Xn(x) = sin

(
(2n− 1)

2

πx

ℓ

)
, n = 1, 2, 3, . . ..

[HPCS] u(0, t) = 0 = ux(ℓ, t) =⇒ Xn(x) = cos

(
(2n− 1)

2

πx

ℓ

)
, n = 1, 2, 3, . . ..

In problems with FSS or FCS eigenfunctions, the choice ℓ = π is convenient because
then the eigenfunction families reduce to sin(nx) and cos(nx). For HPSS and HPCS
problems, the convenient choice is ℓ = π/2, because then the eigenfunction families
become sin((2n− 1)x) and cos((2n− 1)x). With the right value of ℓ, the appropriate
postulate for each of these problems becomes some special case of the following general
pattern:

u(x, t) = 1

2
A0(t) +

∞∑

n=1

[An(t) cos(nx) +Bn(t) sin(nx)] . (∗)

In detail, choosing all An(t) = 0 gives the FSS postulate when ℓ = π; choosing all
Bn(t) = 0 gives the FCS postulate for ℓ = π; choosing all An(t) = 0 and all Bk(t) = 0
when k is even gives the HPSS postulate for ℓ = π/2; choosing all Bn(t) = 0 and all
Ak(t) = 0 when k is even gives the HPCS postulate for ℓ = π/2. But (∗) has another,
more direct, interpretation: it’s also the natural FFS postulate for the problem on
−ℓ < x < ℓ with periodic boundary conditions. So that setup, informally known as
“Fourier’s Ring”, captures all the others.
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The Wave Equation 7

Infinite Extent. At each fixed instant t, the function u(x, t) in line (∗) is certain
to be 2π-periodic with respect to x. (This is true for any choice of time-varying
coefficients An(t) and Bn(t).) Therefore u(x, t) is actually defined for all real x, not
just the x-values in the physical interval of interest. And, as we will soon show,
the behaviour of solutions in the physical segment gets easier to predict once we
understanding the behaviour of u(x, t) on the whole real line.

Periodicity and Visualization. For any 2π-periodic function f̃ , the identity

f̃(x+ 2π) = f̃(x), x ∈ R, (0)

means that knowing the values of f̃ on any interval of length 2π is equivalent to
knowing the values of f̃ everywhere. To illustrate this, it’s convenient to change the
letter x to θ, and to imagine that θ is the central angle that labels a particular point
on the unit circle. Instead of stretching out a representative interval like −π < θ ≤ π
onto a horizontal axis, we imagine wrapping it around the circle and joining the ends.
Now (assuming f̃ is continuous) the graph of f̃ has the parametric representation

(cos θ, sin θ, f̃(θ)), θ ∈ R.

On the graph, the periodicity identity labelled (0) above (where now x = θ) corre-
sponds to the fact that the angles θ and θ + 2π select the same point on the unit
circle. Here are two views of the same function to illustrate the idea:

                −\pi      0      \pi                 
−1

0

1

θ, −3π<θ<3π

y=
f(

θ)

A 2π−periodic function f(θ)

y

Signal f(θ) graphed above unit circle

z

x
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8 PHILIP D. LOEWEN

With these observations in mind, we now change the letter x to θ and imagine
u = u(θ, t) having the unit circle for its domain. This exactly captures the periodicity
property of u in the FFS series form (∗). As noted above, each of the Big Four
eigenfunction series solutions can then be obtained by insisting on 0-values for certain
collections of coefficient functions, and by restricting the physical interval of interest
to a suitable sub-arc of the whole circle. The physical domains for each case are
shown here:

[FFS] the whole ring, −π < θ < π;

[FSS] half the ring, 0 < θ < π (recall ℓ = π);

[FCS] half the ring, 0 < θ < π (recall ℓ = π);

[HPSS] the quarter-ring 0 < θ < π/2 (recall ℓ = π/2);

[HPCS] the quarter-ring 0 < θ < π/2 (recall ℓ = π/2).

Modes. In (∗), the “modes” are the functions cos(nx) and sin(nx). Plugging (∗)
into the wave equation shows how each mode moves:

Än(t) + n2c2An(t) = 0, B̈n(t) + n2c2Bn(t) = 0.

For problems with zero initial velocity , both ODE families have cosine-type solutions,
and we have

u(θ, t) = 1

2
a0 +

∞∑

n=1

[an cos(nct) cos(nθ) + bn cos(nct) sin(nθ)] . (∗)

This is an infinite superposition of simple separated pieces, and in each one the index
n influences both the mode shape and the frequency with which it oscillates in time.

Travelling Waves. Recall that in line (∗), ut(θ, 0) = 0 for all θ. Define

f̃(θ) = u(θ, 0) = 1

2
a0 +

∞∑

n=1

[an cos(nθ) + bn sin(nθ)] .

Then recall the identities

sin(A±B) = sin(A) cos(B) ± cos(A) sin(B), (†)

cos(A±B) = cos(A) cos(B) ∓ sin(A) sin(B). (‡)

Adding the two equations condensed into the single line in (†) gives

sin(A) cos(B) = 1

2
[ sin(A−B) + sin(A+B)].

For the two equations packed into line (‡), adding and subtracting both produce
useful results:

sin(A) sin(B) = 1

2
[cos(A−B) − cos(A+B)],

cos(A) cos(B) = 1

2
[cos(A−B) + cos(A+B)].
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The Wave Equation 9

Adapt these for use in (∗): with A = nθ and B = nct, we have

cos(nct) cos(nθ) = 1

2
[ cos(n[θ − ct]) + cos(n[θ + ct])] ,

cos(nct) sin(nθ) = 1

2
[ sin(n[θ − ct]) + sin(n[θ + ct])] .

Splitting a0 = 1

2
a0 + 1

2
a0 then gives

u(θ, t) = 1

2

(
1

2
a0 +

∞∑

n=1

[an cos(n[θ − ct]) + bn sin(n[θ − ct])]

)

1

2

(
1

2
a0 +

∞∑

n=1

[an cos(n[θ + ct]) + bn sin(n[θ + ct])]

)

= 1

2
f̃(θ − ct) + 1

2
f̃(θ + ct).

Shifts. For any number p, the curve y = g(x − p) is an exact copy of y = g(x),
shifted to the right by p units. Thus

y = g(x− ct)

is an exact copy of y = g(x), shifted right by p = ct units. That is, the shift increases
with time at the constant rate c: the whole curve moves to the right, with speed c,
and no change in shape. Likewise y = g(x+ ct) represents a curve moving to the left,
with speed c, no change in shape.

In our wave-equation problem, the profile f̃(θ) = u(θ, 0) splits into two equal

parts f̃ = 1

2
f̃ + 1

2
f̃ , and then these parts move to the left and the right at speed c.

The movies in class clearly show this!

Exercise. Show that for general interval 0 < x < ℓ, and for each Big-Four eigen-
function family, a wave BVP with zero initial velocity is solved by the appropriate
version of

u(x, t) = 1

2
f̃(x− ct) + 1

2
f̃(x+ ct), where f(x) = u(x, 0), 0 < x < ℓ.

Unwinding. After understanding how u(θ, t) moves in graphs based on the unit
circle, it is time to undo the change of variables x = θ and think again about stretching
the variable x out along the straight infinite real axis. Now u(x, 0) admits a 2π-

periodic extension called f̃(x), defined for all real x, and this function defines the
shapes that slide sideways along the real line.

Graphical Solutions. To solve a standard string problem with any combination of
fixed and free ends, and zero initial velocity, . . .

(1) Build the extension f̃ appropriate to the eigenfunctions of the problem. This
provides the initial condition for the whole real axis.

(2) Half the extended initial condition f̃ will travel to the right with speed c, the
other half to the left; neither shape will change. At each instant t, the sum of
these two contributions gives the solution for u. This “mathematical motion”
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10 PHILIP D. LOEWEN

happens on the entire x-axis, and the segment in the interval 0 < x < ℓ correctly
captures the actual “physical motion” on the interval of interest. In particular,
the BC’s will always be satisfied.

(3) Reflections [good exam question]: Pulses hitting a pinned end bounce back up-
right; pulses hitting a free end bounce back inverted. (Optics applications: New-
ton’s Rings, 3D glasses in mirror.)

Verification. For u(x, t) = 1

2
f̃(x+ ct) + 1

2
f̃(x− ct), we have u(x, 0) = f̃(x) = f(x)

at every point of the basic interval, while the Chain Rule gives

ut(x, t) =
c

2
f̃ ′(x+ ct) −

c

2
1

2
f̃ ′(x− ct) =⇒ ut(x, 0) =

c

2
f̃ ′(x) −

c

2
1

2
f̃ ′(x) = 0.

Thus the initial conditions check out. The Chain rule also shows that this function
satisfies the PDE. Only the BC’s present a real challenge. We’ll show two cases here,
and encourage readers to practice on the others.

Fixed/Fixed. In problems where the BC’s are u(0, t) = 0 = u(ℓ, t), the FSS is
appropriate. So in the solution form

u(x, t) = 1

2
f̃(x+ ct) + 1

2
f̃(x− ct),

the function f̃ is odd and 2ℓ-periodic. Consequently

u(0, t) = 1

2
f̃(ct) + 1

2
f̃(−ct) = 0 (since f̃ is odd),

u(ℓ, t) = 1

2
f̃(ℓ+ ct) + 1

2
f̃(ℓ− ct) = 1

2
f̃(ℓ+ ct) + 1

2
f̃(−ℓ− ct) = 0

(since f̃ is 2ℓ-periodic and odd).

Free/Free. In problems where the BC’s are ux(0, t) = 0 = ux(ℓ, t), the FCS is
appropriate. So in the solution form

u(x, t) = 1

2
f̃(x+ ct) + 1

2
f̃(x− ct),

the function f̃ is even and 2ℓ-periodic. This implies that f̃ ′ is odd and 2ℓ-periodic.
The Chain Rule gives ux(x, t) = 1

2
f̃ ′(x+ ct) + 1

2
f̃ ′(x− ct). Consequently

ux(0, t) = 1

2
f̃ ′(ct) + 1

2
f̃ ′(−ct) = 0 (since f̃ ′ is odd),

ux(ℓ, t) = 1

2
f̃ ′(ℓ+ ct) + 1

2
f̃ ′(ℓ− ct) = 1

2
f̃ ′(ℓ+ ct) + 1

2
f̃ ′(−ℓ− ct) = 0

(since f̃ ′ is odd).

E. D’Alembert’s Solution

For any two smooth functions φ and ψ of one variable, possibly unrelated to each
other, the function

u(x, t) = φ(x+ ct) + ψ(x− ct) (∗)

will satisfy the wave equation utt = c2uxx. This is easy to check using the Chain
Rule. But there’s more: Every smooth solution of the wave equation has the form (∗)
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The Wave Equation 11

for well-chosen φ and ψ. We have already seen how the choices φ = ψ = 1

2
f̃ come up

in separation-of-variables solutions associated with all of our favourite eigenfunction
families. Now we will show that the more general form in (∗) covers every conceivable
solution.

Suppose u = u(x, t) is a solution of the wave equation . . . smooth enough that
uxt = utx everywhere. Introduce new variables

r = x− ct, s = x+ ct;

observe x = 1

2
(s+ r), t =

1

2c
(s− r). Let

U(r, s) = u(x, t) = u

(
s+ r

2
,
s− r

2c

)
.

Then use the Chain Rule to calculate

Ur(r, s) = ux

(
s+ r

2
,
s− r

2c

)[
1

2

]
+ ut

(
s+ r

2
,
s− r

2c

)[
−

1

2c

]

and similarly

Urs(r, s) =

[
1

2

]{
uxx

(
s+ r

2
,
s− r

2c

)[
1

2

]
+ uxt

(
s+ r

2
,
s− r

2c

)[
1

2c

]}

+

[
−

1

2c

]{
utx

(
s+ r

2
,
s− r

2c

)[
1

2

]
+ utt

(
s+ r

2
,
s− r

2c

)[
1

2c

]}

=
1

4
uxx

(
s+ r

2
,
s− r

2c

)
−

1

4c2
utt

(
s+ r

2
,
s− r

2c

)
= 0.

This shows
∂

∂s
Ur = 0, so Ur is independent of s, i.e., Ur(r, s) = Φ(r). This forces

U(r, s) = φ(r) + ψ(s) for some smooth φ and ψ. Conclusion: Every smooth solution
of utt = c2uxx can be expressed as

u(x, t) = φ(x− ct) + ψ(x+ ct) (∗∗)

for suitable choices of φ and ψ. This expression has a legitimate claim to be called
“the general solution” of utt = c2uxx.

Matching Given IC’s. Now suppose IC’s u(x, 0) = f(x) and ut(x, 0) = g(x) are
given. What φ and ψ should be used in (∗∗)? First,

f(x) = u(x, 0) = φ(x) + ψ(x) for all x. (1)

Similarly,

g(x) = ut(x, 0) = [ − cφ′(x− ct) + cψ′(x+ ct)]t=0
, so ψ′(x) − φ′(x) =

1

c
g(x).
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This is required to hold for all real x. So we write it again with the dummy variable
p replacing x and then integrate:

∫ x

p=0

[ψ′(p) − φ′(p)] dp =
1

c

∫ x

p=0

g(p) dp

⇐⇒ ψ(x) − φ(x) = ψ(0) − φ(0) +
1

c

∫ x

p=0

g(p) dp.

(2)

Now add equations (1) and (2) to get

ψ(x) = 1

2
f(x) + 1

2
[ψ(0) − φ(0)] +

1

2c

∫ x

0

g(p) dp.

Subtract (it’s similar) and the result is

φ(x) = 1

2
f(x) − 1

2
[ψ(0) − φ(0)] −

1

2c

∫ x

0

g(p) dp.

Once again, these formulas are valid for all real x, so we can replace x throughout by
any real-valued expression. Thus when we use these forms in the solution form (∗∗),
we get

u(x, t) = φ(x− ct) + ψ(x+ ct)

= 1

2
f(x− ct) + 1

2
f(x+ ct) +

1

2c

∫ x+ct

x−ct

g(r) dr.

This is D’Alembert’s Solution for utt = c2uxx on the whole x-axis with initial
displacement f and initial velocity g.

Reconciliation. How does D’Alembert’s solution relate to the problem on a finite
string? Before answering, we must note that the f in D’Alembert’s solution must
have all of R for its domain in order to use that formula for large t-values. Let’s
consider the case g = 0. Then to start from the eigenfunction series and and express
that solution in form (∗∗) requires doing an appropriate eigenfunction extension

and applying D’Alembert’s formula to the function f̃ , as outlined above. To work
backwards, supposing that a solution of form (∗∗) obeys the given BC’s and respects
the condition of zero initial velocity, one can deduce that u must have the form
written above, and f̃ must have the expected periodicity and symmetry properties.
(Supplementary homework and practice problems.)

Domain of Influence. An observer at the point P with position x listening at time
t will observe an amplitude u(x, t) determined by the the initial displacement f at
the points ct units to the left and right of x, together with a contribution combining
initial velocity information between the two. This can be illustrated by drawing a
two-dimensional cone: information in the shaded region influences the value u(x, t),
while information outside it gets ignored. (As time advances, the cone moves upward,
and includes more and more of the (x, t) plane. So information that was previously
ignored eventually reaches the observer. Information travels at speed c.)
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(x,t)

x

t 

x−ct x+ct
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