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II. Series Solutions for Ordinary Differential Equations
UBC M257/316 Lecture Notes c©2014 by Philip D. Loewen

A. Series Solutions around Ordinary Points

Generic Example. Find two power series solutions around x = 0 for

y′′ + xy′ + y = 0.

Solution. Write y =
∑

k

akxk, y′ =
∑

k

kakxk−1, y′′ =
∑

k

k(k−1)akxk−2. Tabulate

terms in the given ODE and usd substitution to identify the coefficient of xn:

Term Series Sub xn-coeff

y′′

∑

k

k(k − 1)akxk−2
k − 2 = n

k = n + 2
(n + 2)(n + 1)an+2

xy′

∑

k

kakxk k = n nan

y
∑

k

akxk k = n an

Adding these expressions will give another power series:

y′′ + xy + y =
∑

n

cnxn,

where cn = (n + 2)(n + 1)an+2 + nan + an = (n + 1) [(n + 2)an+2 + an] .

To get y′′ + xy + y = 0, the identity theorem requires cn = 0 for each n ≥ 0, i.e.,

an+2 = − 1

n + 2
an, n ≥ 0.

This recurrence relation lets us find all the coefficients. Initialize a0 = 0, a1 = 1
and calculate; then repeat starting from a0 = 1, a1 = 0. Solutions:

a0 = 1, a1 = 0 =⇒ y1 = 1 − x2

2
+

x4

8
− x6

48
+

x8

384
− x10

3840
± · · ·

a0 = 0, a1 = 1 =⇒ y2 = x − x3

3
+

x5

15
− x7

105
+

x9

945
− x11

10395
± · · ·

Both have ρ = +∞, by theory described later. It’s clear that y1 and y2 are linearly
independent, so the general solution of the given equation is

y(x) = c1y1(x) + c2y2(x), c1, c2 ∈ R.

Notice: y1 is an even function, y2 is an odd function. ////
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II. Series Solutions for ODE’s 21

Theorem. If functions p and q are analytic at x0, then the differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (1)

has two linearly independent solutions y1 and y2. Each has the form

y(x) =
∞
∑

k=0

ak(x − x0)
k,

and each has a radius of convergence that satisfies

ρ(y; x0) ≥ min

{

ρ(p; x0), ρ(q; x0)

}

.

Calculation. To find the two solutions mentioned in the Theorem,

(i) Confirm that the theorem applies, by comparing the given equation to proto-
type (1). To do this, transform the equation into standard form and then verify
that the resulting coefficient functions p and q really are analytic at x0.

(ii) Reorganize the given equation to clear fractions if possible. Then expand all
coefficients in power series centred at x0.

(iii) Postulate a series-form solution in the form promised by the theorem. Write,
explicitly,

y =
∞
∑

k=0

ak(x − x0)
k.

Plug this series form for y into (1), and use algebraic methods to reshape the
left side of (1) into a power series:

y′′(x) + p(x)y′(x) + q(x)y(x) =
∞
∑

n=0

cn(x − x0)
n. (2)

Expect each coefficient cn to be a linear combination of the (unknown) coeffi-
cients ak in the postulated form for y. (Error Control : It is imperative that each
cn be independent of x.)

(iv) Together, equations (1) and (2) require cn = 0 for each n. Use this to derive
a recurrence relation between the coefficients ak. (Error Control : A correctly-
formulated recurrence relation will not contain the independent variable x.)

(v) Choose a0 = 1 and a1 = 0 and use the recurrence relation to produce specific
values for a2, a3, . . ., in the first solution

y1(x) = 1 + 0(x − x0) + a2(x − x0)
2 + a3(x − x0)

3 + · · · .

Then choose a0 = 0 and a1 = 1 and use the recurrence relation again to produce
new values for a2, a3, . . ., in the second solution

y2(x) = 0 + (x − x0) + a2(x − x0)
2 + a3(x − x0)

3 + · · · .

Note that y1(x0) = 1, y′

1(x0) = 0, while y2(x0) = 0, y′

2(x0) = 1.
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22 PHILIP D. LOEWEN

Indexing Observation. The derivative formula

d

dx

[

∑

k

ak(x − x0)
k

]

=
∑

k

kak(x − x0)
k−1

holds whenever x 6= x0 for summation over any finite collection of integers k (allowing
k > 0, k = 0, and k < 0). It remains valid for sums over all integers k in regions where
the corresponding series converge. [General series of this form are called Laurent
series. They are discussed in detail in courses on complex analysis like UBC Math
300.] Working with Laurent Series instead of Taylor Series sounds more general and
more difficult, but in fact it saves work for us. We can safely write sums over all
integers k, and then simply remember that for a power series,

ak = 0 for all k < 0.

This way we don’t have to pay special attention to the initial indices in the power
series. (Many textbooks waste a lot of effort on this.)

Example. Find two linearly independent solutions valid near x0 = 1:

xy′′ + y′ + xy = 0. (†)

Solution. Dividing by x produces the standard form

y′′ +

(

1

x

)

y′ + y = 0, (‡)

in which we see that the coefficients have just one complex singularity, namely, x = 0.
This lies a distance 1 from the given expansion centre x0 = 1, so we can be certain
that power series solutions of the desired form exist and have radius of convergence
at least 1. (In symbols, ρ ≥ 1.)

We seek solutions in the form y =
∑

k ak(x − 1)k, with ak = 0 whenever k < 0.
Substitution into the standard form (‡) is nasty: the fraction-free form (†) given in
the question is easier to handle. But even here, some further processing is required.
Transform the coefficients of y′′ and of y using

x = 1 + (x − 1).

This is step (ii) in the recipe given above, where we replace the coefficient functions
with their power series in the quantity (x − 1). This produces a five-term equation
in which substitution works cleanly:

0 = y + (x − 1)y + y′ + y′′ + (x − 1)y′′.
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II. Series Solutions for ODE’s 23

Plugging the postulated solution into the ODE gives the terms tabulated below.

Term Series Sub (x − 1)n-coeff

y
∑

k

ak(x − 1)k k = n an

(x − 1)y
∑

k

ak(x − 1)k+1
k + 1 = n

k = n − 1
an−1

y′

∑

k

kak(x − 1)k−1
k − 1 = n

k = n + 1
(n + 1)an+1

y′′

∑

k

k(k − 1)ak(x − 1)k−2
k − 2 = n

k = n + 2
(n + 2)(n + 1)an+2

(x − 1)y′′

∑

k

k(k − 1)akxk−1
k − 1 = n

k = n + 1
(n + 1)nan+1

Adding these expressions will give a single power series for the derivative combination
in the given ODE:

xy + y′ + xy′′ =
∑

n

cn(x − 1)n,

in which cn is the sum of the terms in the rightmost column above, namely,

cn = (n + 2)(n + 1)an+2 + (n + 1)2an+1 + an + an−1.

But to satisfy (†), we need cn = 0 for each n, i.e.,

(n + 2)(n + 1)an+2 + (n + 1)2an+1 + an + an−1 = 0.

For n ≥ 0 this gives the recurrence relation

an+2 = −(n + 1)2an+1 + an + an−1

(n + 2)(n + 1)
. (R)

Choose a0 = 1, a1 = 0 to get one solution using (R), recalling that a−1 = 0:

n = 0 : a2 = −a1 + a0 + 0

(2)(1)
= −1

2
,

n = 1 : a3 = −4a2 + a1 + a0

(3)(2)
= −−2 + 0 + 1

(3)(2)
=

1

6
,

n = 2 : a4 = −9a3 + a2 + a1

(4)(3)
= · · · = − 1

12
, etc.

This gives one solution,

y1(x) = 1 − 1

2
(x − 1)2 +

1

6
(x − 1)3 − 1

12
(x − 1)4 +

1

12
(x − 1)5 + · · · .
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24 PHILIP D. LOEWEN

Choose a0 = 0, a1 = 1 to get a second solution using (R), again using a−1 = 0:

n = 0 : a2 = −a1 + a0 + 0

(2)(1)
= −1

2
,

n = 1 : a3 = −4a2 + a1 + a0

(3)(2)
= −−2 + 0 + 1

(3)(2)
=

1

6
,

n = 2 : a4 = −9a3 + a2 + a1

(4)(3)
= · · · = −1

6
, etc.

This gives the solution

y2(x) = (x − 1) − 1

2
(x − 1)2 +

1

6
(x − 1)3 − 1

6
(x − 1)4 +

3

20
(x − 1)5 + · · · .

Convergence Discussion (optional). Equation (†) is Bessel’s equation of order 0,
so its general solution has the form y(x) = c1J0(x) + c2Y0(x). Both y1 and y2 found
above must therefore be expressible in this form for suitable (different) choices of
c1, c2. In fact,

y1(x) =

(

Y1(1)

J1(1)Y0(1) − Y1(1)J0(1)

)

J0(x) +

(

J1(1)

J1(1)Y0(1) − Y1(1)J0(1)

)

Y0(x),

y2(x) =

(

Y0(1)

J1(1)Y0(1) − Y1(1)J0(1)

)

J0(x) +

(

J0(1)

J1(1)Y0(1) − Y1(1)J0(1)

)

Y0(x).

Both solutions contain a nonzero multiple of Y0(x), so both diverge as x → 0+, and
this confirms that the radius of convergence for both series is exactly 1. ////

Alternative — Change of Variable. Defining a new variable t = x−x0 transforms
the statement “x is near x0” into the statement “t is near 0”. This substitution turns
the general Taylor-style series

∑

k ak(x−x0)
k into the Maclaurin-style

∑

k aktk, with
the same coefficients ak. Let’s illustrate these observations, with x0 = 1, in the
example of

xy′′ + y′ + xy = 0. (†)

First, use the substitution x = 1+t to replace all x-values, including the ones “inside”
the functions y, y′, y′′:

(1 + t)y′′(1 + t) + y′(1 + t) + (1 + t)y(1 + t) = 0.

Then introduce a new unknown function w, by defining w(t) = y(1 + t). According
to the Chain Rule, w′(t) = y′(1 + t) and w′′(t) = y′′(1 + t), so the ODE satisfied by
w is

(1 + t)w′′(t) + w′(t) + (1 + t)w(t) = 0. (‡)

Now we can find a series solution of the form w(t) =
∑

aktk for (‡). The big

advantage here is that coefficient functions of (1 + t) attached to w and w′′ are
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II. Series Solutions for ODE’s 25

already expressed as power series in the variable t. The change of variables proposed
here takes the place of the trick “write x = 1 + (x − 1)” used earlier.

Steps almost identical to the ones shown above lead to two independent power
series solutions for (‡):

w1(t) = 1 − 1

2
t2 +

1

6
t3 − 1

12
t4 +

1

12
t5 + · · · ,

w2(t) = t − 1

2
t2 +

1

6
t3 − 1

6
t4 +

3

20
t5 + · · · .

To recover solutions to the original problem, invert the substitution x = 1 + t to get
t = x − 1, and remember y(x) = y(1 + t) = w(t) = w(x − 1). Thus, as before,

y1(x) = w1(x − 1) = 1 − 1

2
(x − 1)2 +

1

6
(x − 1)3 − 1

12
(x − 1)4 +

1

12
(x − 1)5 + · · · ,

y2(x) = w2(x − 1) = (x − 1) − 1

2
(x − 1)2 +

1

6
(x − 1)3 − 1

6
(x − 1)4 +

3

20
(x − 1)5 + · · · .

////

Initial Conditions and the Expansion Centre. Suppose the power series below
has radius of convergence ρ > 0:

y(x) =
∞
∑

k=0

ak(x − x0)
k = a0 + a1(x − x0) + a2(x − x0)

2 + a3(x − x0)
3 + . . . .

Then, as noted above,

y′(x) =

∞
∑

k=0

kak(x − x0)
k−1 = 0 + a1 + 2a2(x − x0) + 3a3(x − x0)

2 + . . . .

Evaluation at the expansion centre x = x0 is particularly easy, because each series
has at most one nonzero term:

y(x0) = a0, y′(x0) = a1.

There are several ways to think about the implications of this fact.

1. For an initial-value problem like

(9 + x2)y′′ + 3xy′ + 7y = 0, y(4) = 257, y′(4) = 316,

it’s wise to choose x0 = 4 as the expansion centre. With this choice, the series
form y =

∑

∞

k=0
ak(x − 4)k fits the general discussion above, so the given initial

conditions directly imply a0 = 257 and a1 = 316. The recurrence relation will
produce definite numbers for a2, a3, . . ., and the resulting series will be the unique
solution to the stated initial-value problem.
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26 PHILIP D. LOEWEN

By contrast, imagine trying a solution of the form y =
∑

∞

k=0
αkxk for the prob-

lem above. (Here the coefficients are named αk because they are almost certain
to be different from the ak’s for the series centred at 4.) There would be no
obvious way to determine the constants α0 and α1. The naive approach might
be to try to enforce the conditions

257 =

∞
∑

k=0

4kαk, 316 =

∞
∑

k=1

k4k−1αk.

On the surface, this looks difficult because it would require coming up with some
reliable estimates of the series on the right in terms of α0 and α1. At a deeper
level, note that the series centred at 0 will have radius of convergence 3, so
plugging in x = 4 will not just be unpleasant . . . it will be logically undefined!

2. Specifying values for y(x0) and y′(x0) is enough to select a unique solution for
the differential equation in a certain open interval centred at x0.

3. It’s always possible to express every coefficient ak for k ≥ 2 as a linear combi-
nation of a0 and a1, and then by factoring to write the general series solution
as

y = a0y1(x) + a1y2(x) (∗)

for suitable solution functions y1, y2. When the constants a0, a1 are allowed
to take arbitrary real values, line (∗) provides the general solution of the given
ODE.

Fine Points of Factorial Notation (Optional). Recall the convention that 0! = 1.
For descending products of odd numbers, some writers use the doubled exclamation
point notation

1 × 3 × 5 × · · · × (2n − 1) = (2n − 1)!!.

Descending powers of even numbers can be rewritten as follows:

2 × 4 × 6 × 8 × · · · × (2n) = 2n (1 × 2 × 3 × · · ·n) = (2n)n!.

B. Singular Points

The standard-form equation

y′′ + p(x)y′ + q(x)y = 0 (1)

has a “singular point” at x0 if one of p or q (or both) fails to be analytic at x0. Careful
study of precisely how analyticity fails lets us identify a sub-family of singular points
where a systematic series-based approach is still useful. As we will soon see, we can
overcome a singularity at x0 if both bracketed functions below are analytic at x0:

(x − x0)
2y′′ + [(x − x0)p(x)] (x − x0)y

′ +
[

(x − x0)
2q(x)

]

y = 0 (1′)
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II. Series Solutions for ODE’s 27

This condition, “both bracketed functions are analytic at x0”, is the definition of
regular for a singular point. Some singular points are regular, some are not, and it’s
important to be able to tell one kind from the other.

To understand (and remember) the defining test for regularity of a singular point
x0, think of (1′) as an analytic perturbation of an Euler-type equation. Obtain the
approximate Euler equation by replacing the bracketed terms in (1′) with their limits
at x0:

(x − x0)
2y′′ + B(x − x0)y

′ + Cy = 0,

where B = lim
x→x0

[(x − x0)p(x)] , C = lim
x→x0

[

(x − x0)
2q(x)

]

.
(2)

We know how to solve (2): guess y = (x − x0)
s for some constant s. Then, since (1)

is an analytic perturbation of (2), we can expect solutions for (1) to be analytic
perturbations of solutions for (2), i.e., to have the form

y = (x − x0)
s
[

1 + a1(x − x0) + a2(x − x0)
2 + · · ·

]

. (3)

Typically there are two values of s that work, and there are two ways to find them:

⊓⊔ analyze the pre-perturbed Euler equation (2), or

⊓⊔ tackle equation (1) directly, with a postulate of the form (3), and then insist
on a0 = 1 in the recurrence relation that comes out.

Notes. 1. The same constant term a0 = 1 shows up in both linearly independent
solutions. (This is quite different from the situation for “ordinary points”.)

2. The radius of convergence for the series factor in (3) is at least the distance from
x0 to nearest singularity in C for the bracketed expressions (x − x0)p(x) and
(x − x0)

2q(x).

3. The series forms in (3) are subject to “exponent collisions” if the relevant s-
values are identical, or separated by a positive integer. That requires separate
study (later). For now, apply the methods here to the larger s-value to get one
solution; it’s only the search for the second solution where things get tricky.
(This concern arises only when s1−s2 is an integer; outside this case, both roots
give solutions by the same method.)

Generic Example. Discuss 2xy′′ + y′ + xy = 0.

Solution. Rewrite in standard form:

y′′ +
1

2x
y′ +

1

2
y = 0.

Note bad behaviour at 0 for coefficient of y′: deduce that x = 0 is a singular point.

Multiply by x2 and group factors carefully to express the same equation in perturbed-
Euler format:

x2y′′ +

[

1

2

]

xy′ +

[

x2

2

]

y = 0.
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28 PHILIP D. LOEWEN

If bracketed terms were constants, this would have Euler type. Inside the brackets
are functions analytic at x = 0, so this singular point is regular. Pre-perturbation
Euler equation would be

x2y′′ + 1

2
xy′ + 0y = 0,

with solutions of form y = xs when 0 = s(s − 1) + 1

2
s = s(s − 1

2
), i.e., s = 0, 1

2
. The

quadratic equation s2 − 1

2
s = 0 is called the indicial equation; the roots s = 0, 1

2
are

called the exponents of singularity. At this point the approximate Euler equation has
given us all it can, namely, the values s = 0 and s = 1

2
. We return to the original

equation.

Solutions will have form

y = xs
∑

k

akxk =
∑

k

akxk+s, a0 = 1 (and ak = 0 for k < 0).

Note y′ =
∑

k

(k + s)akxk+s−1, y′′ =
∑

k

(k + s)(k + s − 1)akxk+s−2. Inspired by the

full original ODE, we deduce

x2y′′ =
∑

k

(k + s)(k + s − 1)akxk+s =
∑

n

(n + s)(n + s − 1)anxn+s

1

2
xy′ =

∑

k

1

2
(k + s)akxk+s =

∑

n

1

2
(n + s)anxn+s

x2

2
y =

∑

k

1

2
akxk+s+2 =

∑

n

1

2
an−2x

n+s

The given ODE requires

0 = x2y′′ +

[

1

2

]

xy′ +

[

x2

2

]

y

=
∑

n

[

(n + s)(n + s − 1)an + 1

2
(n + s)an + 1

2
an−2

]

xn+s

= xs
∑

n

[

(n + s)(n + s − 1

2
)an + 1

2
an−2

]

xn.

By the identity theorem, this requires

(n + s)(n + s − 1

2
)an = −1

2
an−2, n ∈ Z. (∗)

Notice that plugging in n = 0 and using a0 = 1 (with a−2 = 0), we get the same

indicial equation as before,

s(s − 1

2
) = 0, i.e., s = 0, s = 1

2
.

(This provides a nice independent confirmation of the analysis above.) Then we
use (∗) for all n > 0:

an = − 1

2(n + s)(n + s − 1

2
)
an−2, n ≥ 1.
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II. Series Solutions for ODE’s 29

Case s = 1

2
: an = − 1

2(n + 1

2
)n

an−2 = − an−2

n(2n + 1)
. Hence

a1 = 0, a3 = 0, a5 = 0, . . . ,

a2 = − 1

2(5)
a0 = − 1

2(5)
,

a4 = − 1

4(9)
a2 =

(−1)2

[4 × 2](9 × 5)
,

a6 = − 1

6(13)
a4 =

(−1)3

[6 × 4 × 2](13 × 9 × 5)
,

...

This gives y1 =
√

x

[

1 − x2

10
+

x4

360
∓ · · ·

]

.

Case s = 0: an = − 1

2n(n − 1

2
)
an−2 = − an−2

n(2n − 1)
. Hence

a1 = 0, a3 = 0, a5 = 0, . . . ;

a2 = − 1

2(3)
a0 = − 1

2(3)
,

a4 = − 1

4(7)
a2 =

(−1)2

[4 × 2](7 × 3)

a6 = − 1

6(11)
a4 =

(−1)3

[6 × 4 × 2](11 × 7 × 3)
,

...

This gives y2 = 1 − x2

6
+

x4

168
∓ · · ·. ////

Challenge Problem—BDP 5.7 #14 in some previous edition. Find the form
of two Frobenius-style solutions around x = 1:

(lnx)y′′ + 1

2
y′ + y = 0.

Solution. Focus on x > 1, using the substitution x = 1+ t. The given ODE requires

ln(1 + t)y′′(1 + t) + 1

2
y′(1 + t) + y(1 + t) = 0.

Introduce the new function u(t) = y(1 + t), noting that u′(t) = y′(1 + t) and u′′(t) =
y′′(1 + t), so

ln(1 + t)u′′(t) + 1

2
u′(t) + u(t), t > 0. (∗)

We will solve this ODE for u(t), then reverse the steps in the substitution:

y(x) = y(1 + t) = u(t) = u(x − 1).
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30 PHILIP D. LOEWEN

Let’s start.

Divide (∗) by ln(1 + t) to see that t = 0 is a singular point. Then multiply by t2 and
rearrange to get

t2u′′(t) +

[

t

2 ln(1 + t)

]

tu′(t) +

[

t2

ln(1 + t)

]

u(t) = 0.

If bracketed terms were constant, we would have an Euler equation. At least those
bracketed terms are analytic, since (whenever |t| < 1)

ln(1 + t) = t − t2

2
+

t3

3
− t4

4
± · · · ,

t

2 ln(1 + t)
=

t

2 (t − t2/2 + t3/3 ∓ · · ·) =
1

2 (1 − t/2 + t2/3 ∓ · · ·) ,

t2

ln(1 + t)
=

t2

(t − t2/2 + t3/3 ∓ · · ·) =
t

2 (1 − t/2 + t2/3 ∓ · · ·) .

Taking limits as t → 0 inside brackets only gives

t2u′′ + 1

2
tu′ + 0u = 0, so u = ts solves iff 0 = s(s − 1) + 1

2
s = s(s − 1

2
).

Thus we will have two solutions of basic Frobenius type,

u1 =
√

t
∞
∑

k=0

aktk =
∞
∑

k=0

aktk+
1

2 , a0 = 1,

u2 = t0
∞
∑

k=0

aktk, a0 = 1.

Calculations, heavy at times, give

u1(t) =
√

t[1 − 3

4
t +

53

480
t2 + · · ·], y1(x) =

√
x − 1[1 − 3

4
(x − 1) +

53

480
(x − 1)2 + · · ·].

u2(t) =

[

1 − 2t +
2

3
t2 + · · ·

]

, y2(x) =

[

1 − 2(x − 1) +
2

3
(x − 1)2 + · · ·

]

.

////

Core Elements of These Problems. For a given ODE with a singular point x0,
the basic issues are

(i) Is the singular point x0 regular?

(ii) If so, what are the exponents of singularity?

Formulating the approximate Euler equation that answers these two questions is an
important skill that reveals lots of useful information before any terms of the series
solution are calculated. Some exam and homework questions ask these two questions
only. Strategic advice: Don’t find the series unless you are sure it is needed!

Example. [Something from a 2013w2 midterm.]
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II. Series Solutions for ODE’s 31

C. Repeated Indicial Roots

Imagine that x = 0 is a regular singular point for the generic equation

y′′ + p(x)y′ + q(x)y = 0,

and that the indicial equation gives two identical real roots: s1 = s2 = s. Using this
s in the standard approach above will produce a solution y1 just as above. But we
expect every second-order ODE to have two linearly independent solutions. What
is the second one? Analogy with the pure Euler situation makes the form below
plausible (see text for firmer reasons to use it):

y2(x) = ln(x)y1(x) + xs
∞
∑

k=1

bkxk = xs ln(x)

∞
∑

k=0

akxk + xs
∞
∑

k=1

bkxk.

The first term involves the series solution y1 that we have presumably already found;
the constants ak are all known. The extra series is new, and we find the additional
unknowns b1, b2, . . . by plugging it into the original equation and finding a recurrence
relation between the bk’s. Note that the second series starts with k = 1, so the lowest
power of x appearing there is actually xs+1. If we were to rearrange the terms in
both solutions in decreasing order of size near x = 0, we would have

y1(x) = xs + a1x
s+1 + a2x

s+2 + · · · ,
y2(x) = xs ln(x) + a1x

s+1 ln(x) + b1x
s+1 + a2x

s+2 ln(x) + b2x
s+2 + . . . .

In UBC Math 257/316, students may be expected to remember the form of y2(x),
but actually calculating the constants bk is considered slightly beyond the scope of
the course.

Example [December 1990 Final Exam, Question 1]. Discuss

xy′′ + (1 − x2)y′ − 2xy = 0.

Discussion. This ODE is singular at x = 0. Reorganize it as

x2y′′ + [1 − x2]xy′ + [−2x2]y = 0,

to see that the singular point at x = 0 is regular. The approximate Euler equation is

x2y′′ + xy′ = 0.

Guessing y = xs leads to the indicial equation s(s − 1) + s = 0, i.e., s2 = 0. So let
s1 = 0, s2 = 0. A first solution to the full original ODE will have the form

y =
∑

k

akxk+s [a0 = 1] :
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0 = −2x2y + xy′ − x3y′ + x2y′′

=
∑

k

[−2]akxk+s+2 +
∑

k

[k + s]akxk+s +
∑

k

[−(k + s)]akxk+s+2

+
∑

k

(k + s)(k + s − 1)akxk+s

=
∑

n

[−2]an−2x
n+s +

∑

n

[n + s]anxn+s +
∑

n

[−(n − 2 + s)]an−2x
n+s

+
∑

n

(n + s)(n + s − 1)anxn+s

=
∑

n

[ − 2an−2 + (n + s)an − (n − 2 + s)an−2 + (n + s)(n + s − 1)an]xn+s

=
∑

n

[

(n + s)2an − (n + s)an−2

]

xn+s.

Equate coefficients, cancel lightly, get

(n + s)an = an−2, all n ≥ 0.

When n = 0, a0 = 1 so this requires s = a−2 = 0, consistent with our earlier findings.
(Good.) So use s = 0 and go forward:

an =
1

n
an−2, all n ≥ 1.

This gives a1 = a−1 = 0, hence ak = 0 for all odd k. Meanwhile,

a2 =
1

2
a0 =

1

2
=

1

211!
,

a4 =
1

4
a2 =

1

4 · 2 =
1

222!
,

a6 =
1

6
a4 =

1

6 · 4 · 2 =
1

233!
, · · ·

a2k =
1

2kk!
.

So one solution is

y1(x) =
∞
∑

k=0

a2kx2k =
∞
∑

k=0

x2k

2kk!
=

∞
∑

k=0

(x2/2)k

k!
= ex2/2.

For a second solution, since s2 = s1 = 0, discussion above suggests the form

y2(x) = ln(x)y1(x) + xs
[

b1x + b2x
2 + b3x

3 + · · ·
]

= ln(x)

[

1 +
x2

2
+

x4

8
+ · · ·

]

+ b1x + b2x
2 + b3x

3 + · · · .
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Let’s try for just b1, b2, by plugging into the original ODE: [nightmare of calculation]
we get b1 = 0, b2 = −1/4. Maple gives the answer in this form:

y2 (x) = ln (x)

[

1 +
1

2
x2 +

1

8
x4 + O

(

x6
)

]

+

[

− 1

4
x2 − 3

32
x4 + O

(

x6
)

]

.

D. Indicial Roots Separated by a Positive Integer

Imagine that x = 0 is a regular singular point for the generic equation

y′′ + p(x)y′ + q(x)y = 0,

and that the roots of the indicial equation are s1 and s2, with s1−s2 = N , a positive
integer. The larger root gives a first solution in the usual way:

y1(x) = xs1

∞
∑

k=0

akxk, a0 = 1 (and ak = 0 for k < 0).

The form of a second solution for x > 0 is almost the same, except that an extra
term appears:

y2(x) = xs2

∞
∑

k=0

bkxk + α ln(x)y1(x), b0 = 1 (and bk = 0 for k < 0).

Here α is a constant which, like the bk’s, must be found by postulating the form for
y2 shown here and plugging this whole expression back into the ODE to determine
the constants.

In UBC Math 257/316, students may be expected to remember the form of y2(x),
but actually calculating the constants α and bk is considered beyond the scope of the
course.

E. Bessel Equations (Optional)

Lots of researchers in past centuries got their names attached to differential equations.
Equations useful in Physics, Chemistry, and Engineering are particularly popular. A
classic example is Bessel’s Equation of order n (for n ≥ 0 any real number):

x2y′′ + xy′ + (x2 − n2)y = 0.

This has a regular singular point at x = 0, where the exponents of singularity come
from the approximate Euler equation

x2y′′ + xy′ − n2y = 0.

Guessing y = xs here gives s(s−1)+s−n2 = 0, i.e., s2 = n2, so s = ±n. Since Bessel’s
Equation actually has important uses in mathematical applications, the study of
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ODE’s in which the indicial equation has roots separated by an integer has real-
world significance.

In case n = 0, we have a repeated root at s = 0, which gives rise to one solution
y1 = 1 + a1x + a2x

2 + · · · analytic everywhere in C, and a second solution whose
general form is

y2 = y1(x) ln(x) + b1x + b2x
2 + · · · .

A suitable constant multiple of y1 is used to define a bounded function known world-
wide as J0; some combination of y1 and y2 gives the other solution Y0, for which
there is a “logarithmic singularity” at x = 0.

When the constant n in Bessel’s ODE is a positive integer, the indicial roots
s = ±n are separated by an integer. The larger root gives a power series solution
valid in the whole complex plane, of the form

Jn(x) = Cnxn
[

1 + a1x + a2x
2 + · · ·

]

.

The smaller root produces a solution Yn(x) that [mis]behaves like x−n near the origin.

The functions Jn and Yn are famous standard functions that scientists and engi-
neers use with the same relaxed familiarity as sines, cosines, and exponentials. Even
Microsoft Excel (with the “Analysis TookPak”) can evaluate Jn(x): the function of
interest is =BESSELJ(x,n). This makes Bessel’s equation a legitimate target that
could serve as a desirable simple outcome in some change-of-variables scheme.
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