
Separation of Variables
c© 2014, Philip D. Loewen

A. Three Famous PDE’s

1. Wave Equation. Displacement u depends on position and time: u = u(x, t).
Concavity drives acceleration:

utt = c2uxx.

2. Heat Equation. Temperature u depends on position and time: u = u(x, t).
Concavity drives flow rate:

ut = α2uxx.

3. Laplace’s Equation. Potential u depends on position in 2D: u = u(x, y).
Concavity averages to 0:

uxx + uyy = 0.

All three equations share two important properties:

• Homogeneity: If u satisfies the equation, then ku does too, for all real k.

• Linearity: Superposition works. That is, if u(1), . . . , u(N) are functions that
satisfy the equation and constants c1, . . . , cN are given, then the function

u
def
= c1u

(1) + c2u
(2) + · · · + cNu(N)

satisfies the equation too.

B. Separation of Variables

For homogeneous linear PDE’s, the following two-stage approach often works:

1. Identify simple product-form solutions.

2. Use linear superposition to combine these as needed.

We investigate idea 1 further in this section; idea 2 will help us later.

Separation in the PDE. Consider case α = 1 of the heat equation:

ut = uxx. (1)

Seek nonzero solutions of form “mode shape”×“amplitude factor”, u(x, t) = X(x)T (t).
Which function pairs X(x) and T (t) will work?

ut = uxx ⇐⇒ X(x)T ′(t) = X ′′(x)T (t) ⇐⇒ T ′(t)

T (t)
=

X ′′(x)

X(x)
all t, all x.

The function on the left in this identity depends only on the single variable t. How-
ever, changing the value of t makes no difference at all on the right side. The only
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2 PHILIP D. LOEWEN

functions of t that have no actual t-dependence are the constant functions. So the
function of t on the left side must be some constant. Let’s give this so-called “sepa-
ration constant” a name. A typical choice is −λ. The minus sign will be convenient
later, but it does not hide any kind of assumption about the sign of the separa-
tion constant. The expression −λ could be negative, zero, or positive, depending on
whether λ > 0, λ = 0, or λ < 0. Anything can happen. Symbolically, our identity
becomes

T ′(t)

T (t)
= −λ =

X ′′(x)

X(x)
.

This gives two ODE’s, linked by their shared constant λ:

(i) T ′(t) = −λT (t), all t,

(ii) X ′′(x) + λX(x) = 0, all x.

Equation (i) holds if and only if T (t) = Ce−λt for some constant C; in (ii), the form
of the general solution is determined by the sign of λ. Three possibilities arise.

Case λ < 0. When λ < 0, we have −λ > 0, so
√
−λ is a well-defined positive number.

The general solution for (ii) is

X(x) = Ae
√
−λx + Be−

√
−λx, A, B ∈ R.

For any choice of λ < 0, this produces many solutions for (1), namely

u(x, t) = Ce−λt
(

Ae
√
−λx + Be−

√
−λx

)

, A, B, C ∈ R.

No generality is lost if we choose C = 1 and allow arbitrary choices for A and B.

Case λ = 0. Here the general solution for (ii) is X(x) = Ax+B, so another solution
for (1) is

u(x, t) = Ce0t (Ax + B) = C(Ax + B), A, B, C ∈ R.

Again, no generality is lost if we choose C = 1 and allow arbitrary A, B ∈ R.

Case λ > 0. When λ > 0,
√

λ is a well-defined positive number. The general solution
for (ii) is X(x) = A cos(

√
λx) + B sin(

√
λx), leading to many more solutions for (1):

u(x, t) = Ce−λt
(

A cos(
√

λx) + B sin(
√

λx)
)

, A, B, C ∈ R.

Again, choosing C = 1 does not limit the variety of choices listed here.

Examples. By choosing different values for λ, A, and B in the cases considered
above, we can construct various solutions for the heat equation (1). Here are four
possibilities; there are infinitely many others:

• u(1)(x, t) = 1 + x

(from λ = 0) – a straight line of slope 1 persists for all time.

• u(2)(x, t) = et
(

ex + e−x
)
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(from λ = −1) – hyperbolic cosine profile in x grows exponentially as time
advances.

• u(3)(x, t) = e−π2t sin (πx)

(from λ = π2) – a sinusoidal profile in x decays exponentially as time ad-
vances.

• u(x, t) = 1 + x − 12et
(

ex + e−x
)

+ 2e−π2t sin (πx)

(u = u(1) − 12u(2) + 2u(3)) – any linear combination of solutions is another
solution, because the PDE is linear and homogeneous. Although we can
describe the simple behaviour of each term, the overall function u is not
easy to summarize. Note also that u is not of the simple separated form
X(x)T (t), even though it comes from a sum of elements with that special
structure.

Fundamental Solution (opt). For practice, please check by differentiation that
the function below also satisfies (1):

u(x, t) =
1√
t
e−x2/4t.

(You should find that the product rule gives

ut =

( −1

2t3/2
+

x2

4t5/2

)

e−x2/4t =
1

4t5/2

(

x2 − 2t
)

e−x2/4t,

and then confirm that this coincides with uxx.)

No General Solution. The heat equation has a dazzling variety of solutions in
separated form (any real number λ produces infinitely many, because you can still
adjust A and B any way you like), plus an interesting exponential solution (not of
separated form), and all the possible superposition combinations built from these.
There is no simple way to catalogue the collection of all solutions. In the world of
partial differential equations, there is no meaningful concept of a “general solution”
like we have for linear ODE’s.

Homogeneous Boundary Conditions. The physical problems that lead to one of
the three famous PDE’s listed above often include information about the function u
at the boundary of the spatial region of interest. Suppose this region is simply a real
interval, a ≤ x ≤ b. Typically there are constants c0, c1 (not both zero) and d0, d1

(not both zero) for which the desired solution u satisfies

c0u(a, t) + c1ux(a, t) = 0, t > 0,

d0u(b, t) + d1ux(b, t) = 0, t > 0.
(BC)

These requirements have the properties of linearity and homogeneity mentioned for
the three famous PDE’s in Section A. If we include them in the specifications of the
product-form solutions u(x, t) = X(x)T (t) considered in Section B, we must have

c0X(a)T (t) + c1X
′(a)T (t) = 0, t > 0,

d0X(b)T (t) + d1X
′(b)T (t) = 0, t > 0.
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4 PHILIP D. LOEWEN

To satisfy these conditions with a function u(x, t) = X(x)T (t) that is not merely the
constant 0, we must insist that neither factor (X(x) or T (t)) is the constant 0. So
the identity above, valid for all t > 0, reduces to a pair of boundary conditions on
the factor X(x):

c0X(a) + c1X
′(a) = 0, d0X(b) + d1X

′(b) = 0.

When combined with the ODE for X described in Section B above, these boundary
conditions complete the specification of an eigenvalue problem. For later reference,
let’s write it out:

(ODE) X ′′(x) + λX(x) = 0, a < x < b,

BC(a) c0X(a) + c1X
′(a) = 0,

BC(b) d0X(b) + d1X
′(b) = 0.

(EVP)

We have some experience with problems like this. When the interval [a, b] happens to
be [0, ℓ] for some ℓ > 0, and when (c0, c1) = (1, 0) and (d0, d1) = (1, 0), we recognize
the eigenvalue problem associated with the Fourier Sine Series. Different choices for
(c0, c1) and (d0, d1) will produce other familiar problems from the Big Four.

Here’s the point: in any particular situation, boundary information will show
that many of the separated-form solutions u(x, t) = X(x)T (t) for the PDE alone
are actually irrelevant. Ignoring these lets us focus on the smaller collection these
solutions where X is an eigenfunction in a problem like (EVP). Note, however, that
different boundary conditions in the original problem will produce different boundary
conditions in (EVP), so there is still plenty of room for variety in the solutions we
must be prepared to work with.

Modes and Music. It’s remarkable that the same eigenvalue problem (EVP) is
useful in each of the famous PDE’s in Section A. Here are the details:

1. A typical boundary-value problem for the wave equation involves

(PDE) utt = c2uxx, 0 < x < ℓ, t > 0,

BC(0) c0u(0, t) + c1ux(0, t) = 0, t > 0,

BC(ℓ) d0u(ℓ, t) + d1ux(ℓ, t) = 0, t > 0.

In any nontrivial solution of separated form u(x, t) = X(x)T (t), the factor
X(x) must be an eigenfunction for (EVP), and the corresponding eigenvalue
λ links the solution X(x) to the equation

T ′′(t) + λc2T (t) = 0.

When λ = ω2 > 0, the eigenfunction X(x) describes the shape of a physical
response, like the displacement of a guitar string — what you see, while
the time-dependent factor T (t) = R cos(ωct − φ) describes a sinusoidal os-
cillation with angular frequence ωc — what you hear. Physical modes with
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larger values of ω correspond to oscillatory motions with correspondingly
higher audible pitches ωc. A sample solution arising when (EVP) has FSS
type could be

u(x, t) = cos
(nπ

ℓ
ct

)

sin
(nπx

ℓ

)

.

2. A typical boundary-value problem for the heat equation involves

(PDE) ut = α2uxx, 0 < x < ℓ, t > 0,

BC(0) c0u(0, t) + c1ux(0, t) = 0, t > 0,

BC(ℓ) d0u(ℓ, t) + d1ux(ℓ, t) = 0, t > 0.

In any nontrivial solution of separated form u(x, t) = X(x)T (t), the factor
X(x) must be an eigenfunction for (EVP), and the corresponding eigenvalue
λ links the solution X(x) to the equation

T ′(t) + λα2T (t) = 0.

When λ = ω2 > 0, the eigenfunction X(x) describes the shape of a physical
response, like the temperature values along a pipe, while the time-dependent

factor T (t) = Ke−α2ω2t describes exponential decay. Physical modes with
larger values of ω have decay-factors in which the rate constant α2ω2 is
correspondingly larger. A sample solution arising when (EVP) has FSS
type could be

u(x, t) = e−n2π2α2t/ℓ2 sin
(nπx

ℓ

)

.

3. A typical boundary-value problem for Laplace’s equation involves

(PDE) 0 = uxx + uyy, 0 < x < ℓ, 0 < y < b,

BC(0) c0u(0, y) + c1ux(0, y) = 0, 0 < y < b,

BC(ℓ) d0u(ℓ, t) + d1ux(ℓ, t) = 0, 0 < y < b.

In any nontrivial solution of separated form u(x, y) = X(x)Y (y), the factor
X(x) must be an eigenfunction for (EVP), and the corresponding eigenvalue
λ links the solution X(x) to the equation

Y ′′(y) − λY (y) = 0.

When λ = ω2 > 0, the eigenfunction X(x) describes a sinusoidal dependence
on the x-coordinate, while the perpendicular factor Y (t) = Aeωy+Be−ωy de-
scribes exponential dependence on y. In every such solution, the coefficients
of y in the exponential factors must be proportional to the angular frequency
ω in the sinusoidal direction. A sample solution arising when (EVP) has
FSS type could be

u(x, y) =
(

enπy/ℓ − e−nπy/ℓ
)

sin
(nπx

ℓ

)

.

Notice how each representative eigenfunction from the FSS family attracts a different
style of multiplicative factor in each of the classic problem types above. In the wave
equation, FSS modes tend to oscillate; in the heat equation, they decay; and in the
Laplace equation they are complemented by exponentials in the independent variable.
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6 PHILIP D. LOEWEN

C. Generalized Superposition and Eigenfunction Series Solutions

We are already experienced with solving classic boundary-value problems by devel-
oping suitable eigenfunction series with time-varying coefficients. Separation
of variables offers another explanation for this approach. Each term in the series we
ultimately write down has the simple separated form discussed in earlier sections.
The series is just an infinite superposition of these basic elements, with superposition
coefficients chosen to respect given initial information.

Let’s illustrate all this with three solved examples. The first one has commentary
comparing the separation of variables approach to the 6-step recipe endorsed by your
instructor.

A Heat Problem–FCS style.

(PDE) ut = α2uxx, 0 < x < π, t > 0,

(BC) ux(0, t) = 0, ux(π, t) = 0, t > 0,

(IC) u(x, 0) = f(x), 0 < x < π.

Here f(x) =

{

x, if 0 < x ≤ π/2,
π − x, if π/2 < x < π,

as on the triwav handout. (That hand-

out is on the course web page, coded RR and dated 11 Jun 2014.)

Eigen-analysis: Plugging u(x, t) = X(x)T (t) into (PDE)–(BC) produces the following
eigenvalue problem for the factor X(x).

X ′′(x) + λX(x) = 0, 0 < x < π; X ′(0) = 0 = X ′(π).

This one is familiar. We know that the eigenfunctions are associated with the Fourier
Cosine Series. In detail, they are

Xn(x) = cos(nx), n = 0, 1, 2, . . . .

Separation of variables links each of these functions with an eigenvalue λn and a
corresponding time-varying factor Tn(t). The safest thing to do about λn and Tn at
this stage is to ignore them, because they will emerge organically as we proceed.

Postulate: Assume that for some functions Tn(t), the solution has the form

u(x, t) = 1
2T0(t) +

∞
∑

n=1

Tn(t) cos(nx). (∗)

(Indeed these Tn(t) functions will be the same ones that we could have found using
separation of variables, but at this stage we don’t need to know that.)

Initialize: From (IC),

f(x) = u(x, 0) = 1
2T0(0) +

∞
∑

n=1

Tn(0) cos(nx), 0 < x < π.

That is, the numbers Tn(0) are the FCS coefficients for the given function f(x). From
the handouts,

Tn(0) =
2

πn2

[

2 cos

(

nπ

2

)

− 1 − (−1)n

]

, n ≥ 1; T0(0) =
π

2
. (∗∗)

File “2014notes”, version of 10 Jul 2014, page 6. Typeset at 16:25 July 11, 2014.



Separation of Variables 7

Propagate: The (PDE) reveals the t-dependence of the unknown functions Tn(t).

0 = ut − α2uxx = 1
2T ′

0(t) +

∞
∑

n=1

[

T ′
n(t) cos (nx) − α2Tn(t)

(

− n2 cos(nx)
)]

= 1
2 [T ′

0(t)] +

∞
∑

n=1

[

T ′
n(t) + n2α2Tn(t)

]

cos(nx).

At each instant t, the RHS is a FCS. It gives an expansion for the constant function
0, whose FCS coefficients are all 0. Hence each expression in brackets must vanish:

T ′
n(t) + n2α2Tn(t) = 0, t > 0, n = 0, 1, 2, . . . .

(Here, at last, is exactly the same ODE for function Tn(t) that one would get from
separation of variables, with the benefit of coefficients that automatically confirm the
correct sign and magnitude for the corresponding eigenvalue λn. Confronting this
ODE now instead of at the beginning makes it perfectly clear where the solution is
supposed to fit into the the grand scheme of the original problem.) Solve this ODE

to get Tn(t) = Ane−n2t for some constant An. (The case n = 0 always needs a
little special attention in FCS problems, but here the general expression T0(t) = A0

correctly captures the constant solution we would expect for the ODE T ′
0(t) = 0.)

Then An = Tn(0), which we know from (∗∗) above, gives

Tn(t) = Tn(0)e−n2α2t.

Report: We conclude that

u(x, t) =
π

4
+

2

π

∞
∑

n=1

1

n2

[

2 cos

(

nπ

2

)

− 1 − (−1)n

]

e−n2α2t cos(nx).

The qualitative features here match the intuition suggested earlier. That is, each
term in the series involves some constant multiplying a sinusoidal mode in space
with an amplitude factor that decays exponentially with time, and the higher spatial
modes have the faster decay rates.

A Wave Problem, FSS-style.

(PDE) utt = c2uxx, 0 < x < π, t > 0,

(BC) u(0, t) = 0, u(π, t) = 0, t > 0,

(IC) u(x, 0) = f(x), 0 < x < π,

ut(x, 0) = g(x), 0 < x < π.

Eigen-analysis: Plugging u(x, t) = X(x)T (t) into (PDE)–(BC) leads to the following
eigenvalue problem for the factor X(x).

X ′′(x) + λX(x) = 0, 0 < x < π; X(0) = 0 = X(π).
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This is one we recognize: the full list of all eigenfunctions is precisly the basis for the
Fourier Sine Series, namely,

Xn(x) = sin(nx), n = 1, 2, . . . .

At this point, separation of variables has done all it can for us. Ignore the eigenvalues
and the ODE for the factor T (t): all these will come up again automatically in later
steps.

Postulate:

u(x, t) =
∞
∑

n=1

Tn(t) sin(nx). (†)

Initialize: By (IC),

f(x) = u(x, 0) =

∞
∑

n=1

Tn(0) sin(nx) =⇒ Tn(0) =
2

π

∫ π

0

f(x) sin(nx) dx,

g(x) = ut(x, 0) =
∞
∑

n=1

T ′
n(0) sin(nx) =⇒ T ′

n(0) =
2

π

∫ π

0

g(x) sin(nx) dx.

Propagate: Using (†) in (PDE) gives

0 = utt − c2uxx =
∞
∑

n=1

[

T ′′
n (t) sin(nx) − c2Tn(t)

(

− n2 sin nx
)

]

=
∞
∑

n=1

[

T ′′
n (t) + n2c2Tn(t)

]

sin nx.

At each instant t, this is an equation about Fourier Sine Series with respect to x: the
function on the left side is expressed by the right. But the function on the left is just
the constant 0, so all the Fourier Sine coefficients must be 0 too: hence

T ′′
n (t) + n2c2Tn(t) = 0,

The general solution of this ODE is Tn(t) = An cos(nct) + Bn sin(nct) (exactly as
before), and the initial values found above determine the constants via

An = Tn(0) =
2

π

∫ π

0

f(x) sin(nx) dx,

ncBn = T ′
n(0) =

2

π

∫ π

0

g(x) sin(nx) dx.

Report: When g(x) = 0 and f(x) =

{

x, if 0 < x ≤ π/2,
π − x, if π/2 < x < π,

u(x, t) =
4

π

∞
∑

n=1

1

n2
cos(nct) sin(nx).

File “2014notes”, version of 10 Jul 2014, page 8. Typeset at 16:25 July 11, 2014.
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A Laplace Problem–HPSS style.

(PDE) uxx + uyy = 0, 0 < x < π, 0 < y < 2π,

(BC1) u(0, y) = 0, ux(π, y) = 0, 0 < y < 2π,

(BC2) u(x, 0) = f(x), u(x, 2π) = g(x) 0 < x < π.

Here functions f and g are part of the problem statement.

Eigen-analysis: Separation of variables u(x, y) = X(x)Y (y) in (PDE)–(BC1) to a
HPSS eigenproblem for X(x) on 0 < x < π. Discard the eigenvalues and the eigen-
functions

Xn(x) = sin(ωnx) , ωn
def
=

2n − 1

2
, n = 1, 2, . . . .

Postulate u(x, t) =

∞
∑

n=1

Yn(y) sin(ωnx). (∗∗)

Initialize: by (BC), f(x) = u(x, 0) =

∞
∑

n=1

Yn(0) sin(ωnx), 0 < x < π.

Hence the constants Yn(0) must be the HPSS coefficients for function f :

Yn(0) =
2

π

∫ π

0

f(x) sin(ωnx) dx. (1)

Likewise, g(x) = u(x, 2π) =
∞
∑

n=1

Yn(2π) sin(ωnx), 0 < x < π,

so the numbers Yn(2π) must be the HPSS coefficients for g:

Yn(2π) =
2

π

∫ π

0

g(x) sin(ωnx) dx. (2)

Lines (1)–(2) provide two algebraic equations for each coefficient function Yn.

Propagate: To satisfy (PDE), the postulated series above must obey

0 = uxx + uyy =
∞
∑

n=1

[

Yn(y)
(

− ω2
n sin (nx)

)

+ Y ′′
n (y) sin(nx)

]

=
∞
∑

n=1

[

Y ′′
n (t) − ω2

nYn(y)
]

sin(ωnx).

For each fixed y, the RHS is an HPSS identity involving functions of x. It gives an
expansion for the constant function 0, whose HPSS coefficients are all 0. Hence we
must have

Y ′′
n (y) − ω2

nYn(y) = 0, 0 < y < 2π.

Solve this ODE problem to get Yn(y) = Aneωny + Bne−ωny. Use the linear system

An + Bn = Yn(0) = 〈a known integral〉
Ane(2n−1)π + Bne−(2n−1)π = Yn(2π) = 〈another known integral〉
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to solve for An and Bn.

Report: The answer will then be

u(x, y) =

∞
∑

n=1

[

Ane

(

2n−1

2

)

y
+ Bne

−
(

2n−1

2

)

y

]

sin

(

2n − 1

2
x

)

.

When the top and bottom boundary functions are given by

f(x) =

{

x, if 0 < x ≤ π/2,
π − x, if π/2 < x < π,

g(x) = 0,

as on the triwav handout, the “known integrals” above come to Yn(0) = pn and
Yn(2π) = 0. Thus Bn = −e2(2n−1)πAn, giving

An =
pn

1 − e2π(2n−1)
=

e−2(2n−1)πpn

e−2(2n−1)π − 1
,

Bn =
pn

1 − e−2(2n−1)π
.

Back in the boxed answer above, we get

u(x, y) =
∞
∑

n=1

pn

1 − e−2(2n−1)π

[

e
−
(

2n−1

2

)

y − e

(

2n−1

2

)

(y−4π)
]

sin

(

2n − 1

2
x

)

.

File “2014notes”, version of 10 Jul 2014, page 10. Typeset at 16:25 July 11, 2014.


