
I. Linear Ordinary Differential Equations
UBC M316 Lecture Notes by Philip D. Loewen

A. Homogeneous Linear ODE’s Constant Coefficients

First-Order ODE’s. Find the unknown function y, given that

by′(x) + cy(x) = 0, ∀x ∈ R. (∗)
[Here b, c are real constants, with b 6= 0.] The obvious solution y = 0 is called the
trivial solution. We seek nontrivial solutions.

Second-Order ODE’s. Given constants a, b, c ∈ R [a 6= 0], consider this linear
equation:

ay′′(x) + by′(x) + cy(x) = 0, ∀x ∈ R. (∗∗)
The obvious solution y = 0 is called the trivial solution. We seek nontrivial solu-
tions, paying particular attention to their zeros.

Standard “Guess”. y = esx, s ∈ C constant. This function solves (∗∗) iff

0 = (as2 + bs + c)esx.

Characteristic Equation. as2 + bs + c = 0.

Characteristic roots. s = − b

2a
±

√
b2 − 4ac

2a
.

Case 1: Distinct Real Roots [b2 − 4ac > 0]. Call these s1 and s2, with s1 < s2.
Every nontrivial solution has the form

y = k1e
s1x + k2e

s2x = es1x
[

k1 + k2e
(s2−s1)x

]

, k1, k2 ∈ R,

with vector (k1, k2) 6= (0, 0). Nontrivial solutions y have at most one zero, since
bracketed term is monotonic.

Case 2: Distinct Complex Roots [b2 − 4ac < 0]. Call these s = σ ± iω, with
ω > 0. Every nontrivial solution has form below, with vector (k1, k2) 6= (0, 0):

y = eσx [k1 cos ωx + k2 sinωx] = Aeσx cos(ωx − φ),

where A =
√

k2
1 + k2

2, (cos φ, sinφ) = (k1/A, k2/A).

Nontrivial solutions y are periodic with period 2π/ω: each one has infinitely many
distinct zeros.

Case 3: Repeated Real Root [b2 − 4ac = 0]. Call it s. Every nontrivial solution
has form

y = k1e
sx + k2xesx = esx [k1 + k2x] , k1, k2 ∈ R,

with vector (k1, k2) 6= (0, 0). Nontrivial solutions y have at most one zero, since
bracketed term is monotonic.

File “2014notes”, version of 17 May 2004, page 1. Typeset at 22:43 July 17, 2014.



2 PHILIP D. LOEWEN

Higher-Order ODE’s. So far we have discussed cases n = 1 and n = 2 of the
general setup

c0y + c1y
′ + c2y

′′ + · · ·+ cny(n) = 0, x ∈ R, (†)
where c0, . . . , cn are real constants with cn 6= 0. Again we “guess” y = est, plug in,
and find a solution if and only if the constant s ∈ C obeys

c0 + c1s + c2s
2 + · · ·+ cnsn = 0.

Solve this for s, expecting n roots (possibly complex, possibly repeated) and n linearly
independent solutions. In the simplest case where there are n distinct real roots
s1, . . . , sn, the general solution is

y = k1e
s1x + k2e

s2x + · · ·+ knesnx, k1, k2, . . . , kn ∈ R.

If s, s are a pair of complex-conjugate roots, they are responsible for two solutions
of the form exponential×sinusoid, just as in the second-order case above. If s is a
repeated root of multiplicity p, it is responsible for producing p independent contri-
butions to the general solution: these turn out to be esx, xesx, x2esx, . . . , xp−1esx.

Systems of First-Order Equations. For a system of n first-order ODE’s in n
unknown functions y1, . . . , yn, like

y′

1(t) = a11y1 + a12y2 + a13y3 + · · · + a1nyn

y′

2(t) = a21y1 + a22y2 + a23y3 + · · · + a2nyn

...

y′

n(t) = an1y1 + an2y2 + an3y3 + · · ·+ annyn,

introduce vector-matrix notation:

y(t) =









y1(t)
y2(t)

...
yn(t)









, A =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann









.

This gives y′(t) = Ay(t).

Transformations. 1. Transforming a single high-order equation into a system.
2. Transforming a system into a single high-order equation.

Solution via Eigenvectors. To solve y′ = Ay, guess y = estv for some constant
s ∈ C and constant vector v. (Insist on v 6= 0, since that choice leads to y = 0, the
trivial solution we can find by inspection.) This produces a solution iff

sestv = Aestv, i.e., Av = sv (v 6= 0).

The latter equation is the definition of the statement, “v is an eigenvector for A
with eigenvalue s.” Every such pair gives one possible vector-valued solution, estv;
linearity produces the general solution

y(t) =
n

∑

k=1

ckesktvk, k1, . . . , kn ∈ R,

where v1, . . . ,vn are linearly independent eigenvectors for A with corresponding
eigenvalues s1, . . . , sn. (Further discussion is required in cases of complex eigenvalues
or an insufficient supply of eigenvectors.)
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I. Linear Ordinary Differential Equations 3

Related Skills.

• Solve initial-value problems based on (∗) when y(0) and y′(0) are known.

• Know Euler’s Formula, eiθ = cos θ + i sin θ, and its applications.

• Know that for any constant k > 0, the limit as x → ∞ gives

e−kx → 0, xe−kx → 0, x2e−kx → 0, . . . , x316e−kx → 0, · · · .

• Have some intuitive feeling for the profound difference between eat with a > 0
and eat with a < 0.

• Recall that when a > 0, b > 0, and c > 0, every solution for (∗∗) has y(x) → 0
as x → ∞.

• Recognize as particularly simple the case of (∗∗) where b = 0 with ac > 0 (simple
harmonic oscillator).
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4 PHILIP D. LOEWEN

B. Nonhomogeneous Linear ODE’s with Constant Coefficients

Students are expected to be able to solve inhomogeneous problems

aÿ(t) + bẏ(t) + cy(t) = f(t) (‡)

in cases where f is a sum of terms of the form

[polynomial] × [exponential] × [sinusoid] .

The Method of Undetermined Coefficients is standard here.

When solving an initial-value problem based on (‡), say

aÿ + bẏ + cy = f(t),

y(0) = y0, ẏ(0) = v0,

it’s imperative to build the complete general solution of the full nonhomogeneous
equation before applying the initial data. Doing these steps in the wrong order
produces the wrong answer. To make sure everything is working, it’s wise to check
that whatever answer you write on the bottom line of a problem actually satisfies
the stated initial conditions. (The sequence of steps in the outline below is chosen
precisely to make correct sequencing automatic.)

It would be wonderful if the previous two paragraphs were all the instructor had
to say in Math 257/316 to trigger a full and accurate recall by all students. Outside
the “wonderful” case, the discussion below may be helpful.

Outline. Confronted with a problem involving an equation like (‡),
1. Guess one solution [“a particular solution”];

2. Build up a list of all solutions [“the general solution”];

3. Specialize/select as required [RTFQ; IC’s; etc.].

1. Guessing a Particular Solution. This is like target shooting. The linear
differential operator

L[y] = aÿ + bẏ + cy

transforms an input function y into some new function. We want to know what to
put in for y to match the “target”, f(x).

Example. Find one solution for ÿ + 4ẏ + 3y = 25e2t.

Solution. Guess y = Ke2t. Plug in:

4Ke2t + 8Ke2t + 3Ke2t = 25e2t

15Ke2t = 25e2t.

This works, with K = 5/3. One solution is yp = (5/3)e2t. ////
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I. Linear Ordinary Differential Equations 5

More generally, for the abstract operator L above,

y = est =⇒ L[y] = a(s2est) + b(sest) + c(est) = (as2 + bs + c)est. (∗)

Put in an exponential function into L, and it generates the same exponential with a
new constant multiplier. If the target is exponential, we should load the cannon with
an exponential of the matching rate, but be prepared to adjust the constant.

Characteristic Polynomial. Recognize the factor as2 + bs + c in line (∗) as p(s),
the characteristic polynomial for L. For future use, note

p(s) = as2 + bs + c =⇒ p′(s) = 2as + b =⇒ p′′(s) = 2a. (∗∗)

Exponential Shift. Imagine giving an input of form y(t) = estu(t) to operator L.
(Here s is a constant, possibly complex.) Use the product rule to find

ẏ = sestu + estu̇ = est (u̇ + su) ,

ÿ = s2estu + 2sestu̇ + estü = est(ü + 2su̇ + s2u),

then combine:

L[estu] = aest
(

ü + 2su̇ + s2u
)

+ best (u̇ + su) + cestu

= est
[

aü + (2as + b)u̇ + (as2 + bs + c)u
]

In view of the preview in line (∗∗) above, we have the wonderful exponential shift

formula:

L[estu] = est

[

p′′(s)

2!
ü +

p′(s)

1!
u̇ + p(s)u

]

.

Back to target shooting: if the given f(t) involves an exponential factor of the form
est, use a matching exponential factor (i.e., the same numerical value for s) in the
input y(t) = estu(t). This will reduce your job to finding the factor u(t).

Example (Same Problem, New Method). Find one solution for ÿ + 4ẏ + 3y =
25e2t.

Solution. Here p(s) = s2 + 4s + 3, so p′(s) = 2s + 4 and p′′(s) = 2. Since e2t is a
factor in the target function, choose s = 2 in the exponential shift formula. We will
have

25e2t = L[e2tu(t)] = e2t (ü + 8u̇ + 15u)

if and only if 25 = ü + 8u̇ + 15u. One solution of this equation is the constant
up(t) = 25/15 = 5/3. Therefore one solution of the original equation is

yp(t) = e2tup(t) = (5/3)e2t.

This is the same result we found before, but it illustrates the new approach. (For
problems this simple, the new approach is probably just a little slower than the direct
method shown first. In contrast, the next example really shows the advantages of
the exponential shift.) ////
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Digression. For a general differential operator with constant coefficients like

L[y] = cny(n) + cn−1y
(n−1) + . . . + c2ÿ + c1ẏ + c0y,

the characteristic polynomial is

p(s) = cnsn + cn−1s
n−1 + . . . + c2s

2 + c1s + c0,

and the pattern suggested by the equation boxed above really works:

L[estu] = est

[

p(n)(s)

n!
u(n) +

p(n−1)(s)

(n − 1)!
u(n−1) + . . . +

p′′(s)

2!
ü +

p′(s)

1!
u̇ +

p(s)

0!
u

]

.

We seldom need this lovely fact for n > 2, but it also works for n = 1. That simple
case is sometimes useful. ////

Example. Find one solution for ÿ + 4ẏ + 3y = −(2 + 8t)e−3t.

Solution. Here p(s) = s2 +4s+3, so p′(s) = 2s+4 and p′′(s) = 2. If y(t) = e−3tu(t),
exponential shift with s = −3 involves p(−3) = 0, p′(−3) = −2, p′′(−3) = 2. So y
provides a solution iff

e−3t [ü − 2u̇ + 0u] = −(2 + 8t)e−3t, i.e., ü − 2u̇ = −2 − 8t.

To find one solution for u, try u(t) = At2 + Bt: this requires

2A − 2(2At + B) = −2 − 8t.

Match coeffs of t: A = 2. Match constants: B = 3. So one solution for u is
up(t) = 2t2 + 3t, and it gives

yp(t) = (2t2 + 3t)e−3t.

////

Discussion. The reduced ODE for u could actually be used to find the general
solution for y, not just one part of it. This is not usually a useful time-saver, but let’s
just watch it work in this example. The homogeneous counterpart of the u-equation
above is ü − 2u̇ = 0, and this is solved by both u = e2t and u = 1 (constant).
Therefore the general solution for u is

u(t) = C1e
2t + C2 + 2t2 + 3t, C1, C2 ∈ R,

and this implies that the general solution for y = e−3tu must be

y(t) = C1e
−t + C2e

−3t + (2t2 + 3t)e−3t, C1, C2 ∈ R.

2. Listing All Solutions. Back in (‡), suppose you have one solution, named yp(t).
Look for others by splitting y(t) = yp(t) + w(t), where yp is known and w(t) is still
to find. We need

f(t) = aÿ + bẏ + cy = (aÿp + bẏp + cyp) + (aẅ + bẇ + cw).
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I. Linear Ordinary Differential Equations 7

Here the choice of yp is very helpful: our new unknown w(t) must obey

aẅ + bẇ + cw = 0.

We know how to generate a complete list of all solutions for this. Note that the
characteristic polynomial for this new problem is the same p(s) as for the original
one. Skill with abstract thinking makes this clear: since the operator L is linear,
we’re just saying that if L[yp] = f , then

f = L[yp + w] ⇐⇒ f = L[yp] + L[w] ⇐⇒ L[w] = 0.

Example. List all functions y satisfying ÿ + 4ẏ + 3y = −(2 + 8t)e−3t.

Solution. We know one solution, yp = (2t2 + 3t)e−3t. Solving

0 = p(s) = s2 + 4s + 3 = (s + 3)(s + 1)

for s = −1, s = −3 reveals the general solution for the homogeneous problem:

L[w] = 0 ⇐⇒ w(t) = Ae−t + Be−3t, A, B ∈ R.

Therefore the general solution for the original nonhomogeneous equation is

y(t) = Ae−t + Be−3t + (2t2 + 3t)e−3t, A, B ∈ R.

(Compare the item labelled “Discussion” above.) ////

3. Making a Selection. Auxiliary information about the desired function y should
be applied only after an accurate list of candidates is available. That’s why it’s shown
last in the suggested 3-step outline. Here’s how the pieces already shown would fit
into a full solution of an initial-value problem.

Example. Solve for y(t):

ÿ + 4ẏ + 3y = −(2 + 8t)e−3t, y(0) = 1, ẏ(0) = 2.

Solution. First, find one solution of the given ODE, as shown earlier. (Recall yp(t) =
(2t2 + 3t)e−3t.) Second, augment that solution to produce the complete catalogue
(“general solution”) as above: recall

y(t) = Ae−t + Be−3t + (2t2 + 3t)e−3t, A, B ∈ R.

Finally, third, enforce the extra conditions:

1 = y(0) = A + B, 2 = ẏ(0) = −A − 3B + 3.

These hold if and only if A = 1 and B = 0, so the stated problem has a unique
solution, namely,

y(t) = e−t + (2t2 + 3t)e−3t.

////
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C. Linear ODE’s with Variable Coefficients–First Order

For the first-order linear ODE

y′ + r(x)y = g(x), (1)

everybody is expected to

• recognize the general solution form

y = ky1(x) + yp(x), k ∈ R,

where y1 is any nontrivial solution of the homogeneous equation y′ + r(x)y = 0
and yp(t) is any “particular solution” of (1),

• know how to find the general solution above,

• know how to find a specific solution when given a point (x0, y0) its graph must
pass through (i.e., an “initial condition” like y(x0) = y0 for given numbers x0

and y0),

• know that the theory ensures existence and uniqueness for that IVP on any open
interval containing x0 throughout which functions r(x) and g(x) are continuous

• be on guard for possible bad behaviour at points where functions r and g are
discontinuous.
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I. Linear Ordinary Differential Equations 9

D. Linear ODE’s with Variable Coefficients–Euler Type

Observation. If y = (x − x0)
s, then

y = (x − x0)
s,

y′ = s(x − x0)
s−1 =

s

(x − x0)1
y,

y′′ = s(s − 1)(x − x0)
s−2 =

s(s − 1)

(x − x0)2
y,

y′′′ = s(s − 1)(s − 2)(x − x0)
s−3 =

s(s − 1)(s − 2)

(x − x0)3
y,

so each of y, (x− x0)y
′, (x− x0)

2y′′, (x − x0)
3y′′′ is a constant multiple of the same

function y. This is the key to handling equations of “Euler type”, whose general form
is

c0y + c1(x − x0)y
′ + c2(x − x0)

2y′′ + · · · + cn(x − x0)
ny(n) = 0.

[Here c0, . . . , cn are real constants with cn 6= 0.] The discussion is similar for all
n ≥ 1; we’ll focus on the case n = 2, using simpler notation

a(x − x0)
2y′′ + b(x − x0)y

′ + cy = 0. (∗)

“Euler-type” equations have the form

a(x − x0)
2y′′ + b(x − x0)y

′ + cy = 0, (∗)

where a, b, c, x0 are real constants. Assume a 6= 0 here. Then (∗) is equivalent to

y′′ +
b

a(x − x0)
y′ +

c

a(x − x0)2
y = 0. (∗′)

Now (∗′) is the standard form for theoretical developments, and here the coefficients
are discontinuous at x = x0. This is called a singular point of equation (∗), and we
can expect solutions to exist separately in the intervals (−∞, x0) and (x0,∞), but
not on the whole real line. We’ll work on the interval (x0, +∞), leaving the other
interval for home practice.

Solve (∗) in (x0, +∞) by substituting x− x0 = et as shown below. (We did case
x0 = 0; adapt at home, please.) Or, just “guess” solution form y = (x − x0)

s. Plug
in, play, get as2 + (b − a)s + c = 0. Three cases arise:

(i) Distinct real roots s1, s2, with s1 < s2: gen sol

y = k1(x − x0)
s1 + k2(x − x0)

s2 , x > x0, k1, k2 ∈ R.

(ii) Repeated real root at s: gen sol

y = k1(x − x0)
s + k2(x − x0)

s ln(x − x0), x > x0, k1, k2 ∈ R.
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(iii) Imaginary roots s = σ ± iω with ω > 0: use r = (x − x0) in

rs = rσxiω = rσ
(

eln r
)iω

= rσeiω ln r = rσ [ cos(ω ln r) + i sin(ω ln r)] .

Separate real and imaginary parts to get the general solution for x > x0:

y = (x − x0)
σ [k1 cos(ω ln(x − x0)) + k2 sin(ω ln(x − x0))] , k1, k2 ∈ R.

Summary Table (Case x0 = 0)

Constant-Coefficient Case Euler-type Equation

Equation: ay′′ + by′ + cy = 0, x ∈ R ax2y′′ + bxy′ + cy = 0, x > 0

“Guess”: y = esx y = xs

Quadratic for s: 0 = as2 + bs + c 0 = as2 + (b − a)s + c

General solution cases:
• s1 6= s2 both real . . . y = Aes1x + Bes2x y = Axs1 + Bxs2

• s1 = s2 = s . . . y = Aesx + Bxesx y = Axs + B(lnx)xs

• s1 = σ + iω, ω 6= 0 . . . y = eσx [A cos (ωx) + B sin (ωx)] y = xσ [A cos (ω lnx) + B sin (ω lnx)]

Nonlinear Substitution. Assume a 6= 0 and x0 = 0, and work on

ax2y′′ + bxy′ + cy = 0. (†)
Here we work on the interval where x > 0, and substitute x = et: function y obeys (†)
in the interval (0,∞) if and only if

a(et)2y′′(et) + b(et)y′(et) + cy(et) = 0 ∀t ∈ R.

Write u(t) = y(et) and use the chain rule:

u′(t) = ety′(et), u′′(t) = (et)2y′′(et) + ety′(et).

Rearrange to eliminate y′ and y′′:

y′(et) = e−tu′(t), y′′(et) =
u′′(t) − ety′(et)

e2t
= e−2t [u′′(t) − u′(t)] .

Back-substitute, watch wonderful cancellation occur, reduce (†) to

au′′(t) + (b − a)u′(t) + cu(t) = 0, t ∈ R. (‡)
Recognize “a problem we have solved before.” Recall that u(t) = y(x) when x = et,
i.e., when t = lnx. So typical solutions for (†) involve terms like these:

u(t) = est ↔ y(x) = u(lnx) = xs,

u(t) = test ↔ y(x) = u(lnx) = xs ln(x),

u(t) = eσt cos(ωt) ↔ y(x) = u(lnx) = xσ cos(ω lnx).

But it’s important to note where these s-values come from: the characteristic equation
is not so easy to “read” from the coefficients in (†) . . . it comes from (‡),

as2 + (b − a)s + c = 0.

Sketches. Show some typical curves of y = xs for s < 0, s = 0, s > 0; then some
curves for y = xs lnx; then typical y = xσ cos(ω lnx).
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Interval of Existence. Discuss situation for x > x0 and x < x0, and why it’s
unusual to have one function work in both regions. Explain why if y = f(x − x0)
solves (∗) when x > x0, then u(t) = f(x0 − t) solves (∗) when t > x0.

Example. x2y′′ − 2y = 0. Find general solution in region (0, +∞). Find solution
obeying y(1) = 3, y′(1) = 0. Find solution obeying y(1) = 3 with a finite limit as
x → 0+. Find solution obeying y(1) = 3 with a finite limit as x → ∞.

Answers. y = k1/x + k2x
2; y′ = −k1/x2 + 2k2x;

3 = k1 + k2, 0 = 2k2 − k1 =⇒ k1 = 2, k2 = 1, y = 2/x + x2.

lim
x→0+

y(x) =

{

+∞, if k1 > 0,
0, if k1 = 0,
−∞, if k1 < 0.

Hence 0 = k1, 3 = k2, giving y(x) = 3x2.

lim
x→∞

y(x) =

{

+∞, if k2 > 0,
0, if k2 = 0,
−∞, if k2 < 0.

Hence 0 = k2, 3 = k1, giving y(x) = 3/x. ////

Example. A certain nonzero function y, defined for x > 2, obeys y(5) = 0 and

(x − 2)2y′′ + 5(x − 2)y′ + 8y = 0.

Find all zeros of y.

Solution. y = (x − 2)−2 [k1 cos(2 ln(x − 2)) + k2 sin(2 ln(x − 2))] for some k1, k2.

Zero-spacing of φ(θ)
def
= k1 cos(θ) + k2 sin(θ) is π, so zeros will occur when

2 ln(x − 2) − 2 ln(5 − 2) = kπ, k ∈ Z,

i.e., when x = 2 + exp(ln 3 + kπ/2) = 2 + 3ekπ/2, k ∈ Z. ////

Nonhomogeneous Example by Substitution. Copy an old homework problem.
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